

Year V, v.2 2025 | submission: 20/10/2025 | accepted: 22/10/2025 | publication: 24/10/2025

Phytotherapy in neurology: a review of the therapeutic potential and toxicological risks of natural remedies

Phytotherapy in neurology: the dual face of natural medicines – a review of the therapeutic potential and toxicological risks

Elisângela Aparecida Comparsi Milena Ribeiro Borges

ABSTRACT:

The use of herbal remedies and medicinal plants has become increasingly popular due to the perception that they represent safer and more affordable alternatives to conventional medications. However, despite their benefits, the toxicity of these treatments, often underestimated, can pose significant health risks. This study aimed to investigate the therapeutic potential and toxicological risks of herbal remedies and medicinal plants used in the treatment of neurological diseases such as epilepsy, Alzheimer's disease, Parkinson's disease, and others.

The research was conducted through an integrative literature review, selecting recent scientific studies evaluating the benefits and adverse effects of these compounds. The main factors contributing to toxicity, such as inadequate dosages, drug interactions, and lack of professional guidance, were analyzed. Data were collected from reliable sources such as PubMed, SciELO, Scopus, and Google Scholar, using the descriptors: toxicity, natural product, phytotherapy, nervous system, and adverse effects. The results of this review highlight the need for a broader understanding of the risks associated with the indiscriminate use of herbal remedies and medicinal plants, emphasizing the importance of a cautious and controlled approach by healthcare professionals. Furthermore, the findings contribute to the development of more rigorous guidelines on the use of these natural compounds, promoting greater safety and efficacy in the treatment of nervous system diseases. The results include the need for patient re-education and guidance, as well as practical guidelines for healthcare professionals, aiming for monitored use, caution, and appropriate intervention in cases of adverse effects.

Keywords: toxicity, natural product, phytotherapy, nervous system, adverse effects.

ABSTRACT The

use of phytotherapics and medicinal plants has become increasingly popular due to the perception that they offer safer and more affordable alternatives to conventional drugs. However, despite their benefits, the toxicity of these treatments, often underestimated, can pose significant health risks. This study aimed to investigate the therapeutic potential and toxicological risks of phytotherapics and medicinal plants used in the treatment of neurological disorders such as epilepsy, Alzheimer's disease, Parkinson's disease, and others. The research was conducted through an integrative literature review, selecting recent scientific studies that evaluate the benefits and adverse effects of these compounds. The main factors contributing to toxicity were analyzed, including inappropriate dosages, drug interactions, and the lack of professional guidance. Data were collected from reliable sources such as PubMed, Scopus, and Google Scholar, using the descriptors: toxicity, natural product, phytotherapy, nervous system, and adverse effects.

The results highlight the need for a broader understanding of the risks associated with the indiscriminate use of phytotherapics and medicinal plants, highlighting the importance of a cautious, evidence-based approach supervised by healthcare professionals. Furthermore, the findings contribute to the development of more rigorous guidelines for the use of these natural compounds, promoting greater safety and efficacy in the treatment of nervous system disorders. The study also reinforces the importance of patient education and the establishment of practical guidelines for healthcare providers to ensure monitored use and appropriate intervention in cases of adverse reactions.

Keywords: Toxicity. Biological Products. Phytotherapy. Nervous System. Adverse Drug Events

INTRODUCTION

The use of medicinal plants and phytotherapeutics in the treatment of neurological diseases has grown significantly in recent decades, driven by the realization that these therapies natural products represent safer, more accessible and culturally accepted alternatives compared to synthetic medicines. However, the increased popularity of these practices does not eliminate the risks associated with self-medication, lack of professional guidance and lack of scientific evidence regarding the safety and efficacy of many compounds used (Almeida et al, 2022; Freitas; Souza, 2021).

According to the Ministry of Health, medicinal plants are those that contain substances with therapeutic properties in their constituent parts, while herbal medicines correspond to the products obtained from them, and can be presented in different forms pharmaceuticals, such as capsules, tablets, syrups and creams (Brazil, 2023).

Phytotherapy has accompanied humanity since the dawn of civilization. Records

Historical records indicate that, since 2300 BC, Egyptians, Assyrians and Hebrews cultivated various herbs and used them in medical treatments, establishing the foundations of phytotherapy as we know it today (Rocha, 2021).

Scientific and traditional literature recognizes the therapeutic potential of different species vegetables in the management of neurological disorders, due to their anxiolytic properties, antidepressants, neuroprotectors, and modulators of cognitive function. Studies have shown promising results with the use of *Passiflora incarnata* and *Valeriana officinalis*, associated with effects anxiolytics and sedatives; *Ginkgo biloba*, related to improved memory and neuronal protection; *Curcuma longa*, with antioxidant and anti-inflammatory action; and *Bacopa monnieri*, investigated for its positive influence on cognition and synaptic plasticity (Borges et al, 2022; Lima et al., 2021; Fatima, 2022; Genchi et al., 2024; Desai et al., 2025).

The lack of professional guidance, combined with the belief that natural products are free risks lead to the inappropriate use of these substances, leading to serious adverse effects, such as hepatic and neurological toxicity, in addition to drug interactions that compromise therapies conventional pharmacological (Silva; Castro, 2019; Moreira; Gomes, 2023).

Many herbal medicines still lack robust clinical studies to prove their effectiveness. and safety. The lack of standardization of doses and the variability in the chemical composition of plants make it difficult to obtain consistent results, such data reinforce the need for scientific research that supports the rational use of these products (Chandran, 2020).

In recent years, advances in neuroscience and pharmacognosy have driven the search for for new bioactive molecules of plant origin, especially in a scenario where diseases neurodegenerative diseases, such as Alzheimer's and Parkinson's, are showing increasing prevalence worldwide. according to the World Health Organization (WHO, 2023), neurological diseases represent a leading cause of global disability and mortality, affecting millions of people and generating a major socioeconomic impact. In this context, phytotherapy emerges as an alternative promising complementary therapy, capable of providing natural compounds with neuroprotective potential and neurotransmitter modulator (Costa; Almeida, 2022; Sousa et al., 2022).

At the same time, it is necessary to consider the regulatory and cultural context surrounding the use of medicinal plants in Brazil. The National Policy on Medicinal Plants and Phytotherapeutics (PNPMF), established in 2006 and updated in 2023, seeks to promote the safe and rational use of these therapies in Unified Health System (SUS), in addition to encouraging studies on efficacy, standardization and toxicity of natural compounds (BRASIL, 2023). However, the lack of product standardization, the absence quality control and empirical use still represent significant challenges for safe consolidation of phytotherapy in the clinical context (Barbosa; Pereira, 2020).

Neurological phytotherapy also has increasing relevance in the field of biomedicine, as it allows integration between scientific knowledge and traditional therapeutic practices.

Professionals in this area play a fundamental role in investigating the mechanisms of action, in the analysis of toxicity and in providing safe guidance to patients regarding the use of natural medicines. This multidisciplinary approach contributes to more humanized and knowledge-based care. evidence, respecting the biological and cultural particularities of individuals (Mendonça Neto et al., 2022; Carvalho et al., 2025).

In the field of neurology, interest in natural compounds has grown, especially for the search for alternatives with less toxicity for the treatment of neurodegenerative disorders and psychiatric conditions. The ability of certain plants to modulate neurotransmitters and protect neurons against oxidative stress makes them promising candidates in research on Alzheimer's, Parkinson's, epilepsy and anxiety disorders (Chandran, 2020).

Thus, the objective of this work was to research the therapeutic potential of plants medicinal plants in the neurological context, highlighting their bioactive properties, as well as the risks and associated adverse effects.

1. METHODOLOGY

This research was characterized as an integrative literature review, whose objective was analyze the therapeutic benefits and toxicity of medicinal plants and phytotherapeutics used in treatment of neurological diseases.

The selection of articles was carried out in the PubMed, SciELO, Scopus and Google databases Scholar, using the following descriptors in Health Sciences: toxicity, drugs natural, phytotherapy, nervous system and adverse effects.

The inclusion criteria adopted were: articles that addressed the proposed theme, published in the period from 2015 to 2025, in Portuguese or English, and available in the full version (full text). Studies with a publication date greater than 10 years ago and those that did not addressed the topic of this work. 23 articles were analyzed and chosen that fit in the inclusion criteria.

Data collection involved critical reading of the selected articles, with analysis of their methods, results, and conclusions. Content analysis was applied to categorize the data. referring to the most commonly used substances, their therapeutic benefits and the toxicity of the compounds. In addition, specific factors such as dosage, common and main forms of use were evaluated. potential risks reported in the studies.

3. RESULTS AND DISCUSSION

Analysis of the data collected revealed a significant diversity of medicinal plants and herbal medicines used in the context of neurology, each presenting different profiles of therapeutic effects and associated risks. The information compiled in Table 1 summarizes the observed benefits, potential toxic effects and the most common forms of use of these substances, allowing a critical evaluation of their clinical applicability.

In table 1, we can see that plants like *Bacopa monnieri* have a large potential in neurological therapy, its neuroprotective effects can protect neuronal cells against damage induced by ÿ-amyloid aggregates (Aÿ 25–35), common in diseases such as Alzheimer's, however, its misuse is marked by adverse effects such as gastrointestinal disorders; and hepatoxicity in cases of overdose, mainly associated with low-dose products qualities (Desai et al, 2025).

Ginkgo *biloba* also showed clear benefits, such as improved cognition and effects neuroprotective, antioxidant and anti-inflammatory agents that can protect or reduce cell damage

Velasquez et al., 2024).

Year V, v.2 2025 | submission: October 19, 2025 | accepted: October 21, 2025 | publication: October 23, 2025 neuronal, as far as its risks are concerned, is contraindicated for people with bleeding disorders, pregnant or lactating women, because its composition contains ginkgolides, substances that inhibit platelet aggregation, that is, they make blood clotting difficult, increasing bleeding, especially in those who already use anticoagulants (Tan et al., 2015).

Other herbal remedies, notably Valerian (Valeriana officinalis), Lavender (Lavandula angustifolia) and Melissa (Melissa officinalis), present benefits in cases of anxiety, insomnia, improved sleep quality, and agitation. However, its possible risks interactions with conventional drugs are significant, and can potentiate effects and cause drowsiness and excessive sedation, which requires clinical observation and dose adjustment (Lopes et al., 2017; Almeida et al., 2024; Velasquez et al., 2024).

This potentialization is directly linked to its chemical composition, which reveals a common mechanism of action in the modulation of the Central Nervous System (CNS). Bioactive compounds such as valepotriates and valerenic acid from Valerian, linalool and linally acetate from Lavender, and rosmarinic acid from Melissa, act as allosteric modulators of the Gamma-Gamma receptor.

Aminobutyric acid (GABA-A). By intensifying the activity of the main inhibitory neurotransmitter of CNS, promote the desired anxiolytic and sedative effect (Lopes et al., 2017; Almeida et al., 2024;

Toxicologically, concomitant use with drugs that share this mechanism (such as benzodiazepines, barbiturates, or alcohol) leads to synergistic toxicity. In cases of overdose or unsupervised association, excessive neuronal inhibition does not restricted to intense sedation, which may progress to central depression respiratory system in the brainstem, resulting in life-threatening complications. This serious risk of central toxicity is often underestimated by the patient, reinforcing the need for intervention rigorous professional (Carvalho et al, 2025).

Table 1 - Plants and herbal medicines researched, benefits, potential risks and use.

Plant and/or phytotherapeutic	Benefits found in neurological	Potential toxic and general risks	Forms of common uses.
	therapy		
Popular name: Brahmi Scientific name: (Bacopa monnieri) Author: Desai et al., 2025	Neuroprotective and neurorescue effects; modulation in in in Alzheimer's and Parkinson's diseases; improvement of cognitive function and memory.	Possible drug interactions with anxiolytics and sedatives; gastrointestinal disorders attributed to the action of saponins present in BME; hepatoxicity and kidney damage at doses higher than the safe dosage.	Teas or infusions; Dust under food; Capsules; Fortified foods.

Popular name: Lemongrass Citral (main active compound) Allergic reactions; possible drug Teas: Essential oil (aromatherapy or interactions with anxiolytics, has anxiolytic and sedative Scientific name: sedatives or anticoagulants, properties, acting on the central topical). potentiating effects; risks of Cymbopogon citratus nervous system Author: Mendonça Neto et al., hypoglycemia in to promote relaxation and reduce high doses in people prone to them. Possible drug interactions: may Teas or infusions of dried leaves; Popular name: Ginkgo or Improves cognitive function in Japanese walnut the elderly, may stabilize interact with anticoagulants, Scientific name: Ginkgo biloba cognitive performance or delay increasing Standardized extract; capsules decline; has neuroprotective, the risk of bleeding; contraindicated for people with Author: Tan et al., 2015 antioxidant, and anti-inflammatory Liquid extract; bleeding disorders, pregnant or in lactating women. Possible drug interactions, Popular name: Lavender or Compounds such as linalool and Teas: linalyl acetate modulate the lavender potentiates the effect Infusions; Name scientific: activity of GABA, a of benzodiazepines or other essential neurotransmitter responsible for sedatives; slightly anticoagulant (aromatherapy); Lavandula angustifolia, formerly neuronal inhibition, promoting effect, interfering with antiplatelet Lavandula officinalis Capsules. anticoagulants; relaxation and reducing anxiety. Author: Lopes et al., 2017 allergic reactions rash or irritation. Possible drug interaction that Contains bioactives such as Infusion of leaves: Popular name: Lemon balm or rosmarinic acid and flavonoids may enhance the effect of Standardized extracts; that modulate the activity of Scientific name: Melissa officinalis benzodiazepines, barbiturates Capsules. or other sedatives Author: Almeida et al., 2024 GABA, which reduces anxiety and decreases agitation in adults Infusion of dried roots: Popular name: Valerian or St. Contains valepotriates and Drug George's wort valerenic acid that modulate interactions: may enhance the Standardized extracts; Scientific name: GABA, a neurotransmitter effects of benzodiazepines. Capsules. responsible for Valeriana officinalis barbiturates, and other sedatives; may interact with Author: Velasquez et al., 2024 neuronal inhibition, resulting in reduced anxiety, improved alcohol, increasing the effects relaxation and aided sleep. and risk of accidents.

Source: prepared by the authors.

Furthermore, it was possible to identify the contexts in which these herbal medicines are most frequently used, whether in conventional or complementary therapies, as well as the limits

Year V, v.2 2025 | submission: October 19, 2025 | accepted: October 21, 2025 | publication: October 23, 2025 recommended daily dosage and possible administration errors that may contribute to adverse effects.

Table 2 presents this data in summary form, facilitating the understanding of the risks. and benefits associated with the use of these substances in different therapeutic contexts.

The main dosage errors found were the excess intake of plants in tea form, exceeding more than 2 cups/day, which in cases of use of *Cymbopogon citratus*, *Passiflora incarnata, Piper methysticum* cause sedation and extreme drowsiness. In *Piper methysticum*, it is still possible to observe an aggravating factor in overdose or prolonged use, due to its hepatoxic potential, which may require urgent medical intervention (Souza et al., 2019; Mendonça Neto et al., 2022; Borges et al., 2022).

In *Curcuma Longa* and *Lavandula angustifolia*, the effects were discomfort gastrointestinal, nausea and dizziness, also due to excess standardized extract and capsules. The curcumin, a food spice from turmeric, also showed an inhibitory effect on the factor platelet activation and arachidonic acid-mediated platelet aggregation through inhibition thromboxane formation and Ca2+ signaling , increasing the risk of bleeding, and in *Lavandula angustifolia*, the ingestion of essential oil, which is strictly contraindicated, due to oils essential to have a high concentration of bioactives, and their use is recommended in aromatherapy alone is a risk factor for gastrointestinal health leading to toxic effects quickly (Lopes et al., 2017; Genchi et al., 2024)

Table 2 – Types of therapy, dosage limit and possible errors.

Plant / Phytotherapeutic	Type of Therapy		Possible Daily Dosage Limit		Errors	of
				Dosage		
Popular name: Grass Lemon Name scientific:	Complementary, traditional herbal medicine		Tea: 1–2 cups/day; essential oil: topical use or aromatherapy (do not ingest neat)	Ingestion of po excess tea can drowsiness or	using intense	,
Cymbopogon citratus Author: Mendonça Neto et al., 2022						
Common name: Turmeric or	Complementary,		Powder: 1–3 g/day; standardized	High dose sup	plements	in
Turmeric Scientific name: Curcuma Longa	phytotherapy		extract: 500-1500 mg/day	cause	ma increase	ay
Author: Genchi et al., 2024				gastrointestinal risk	discomfort	of
				bleeding in an	ticoagulated	patients
Popular name: Kawa-kawa or kava	Complementary, traditional herbal medicine		Standardized extract: 120–250 mg kavalactones/day	Prolonged or e		,
Scientific name: Piper methysticum	(Pacific)			sedation; com		ses
Author: Souza et al., 2019				the risk of seri	ious adverse	effects.
Popular name: Lavender or	Complementary		Capsules/extract: 80–160 mg/	Excess capsu	•	
lavender	aromatherapy, herbal medicine	or	day; essential oil:	or dizziness; i	ncorrect use o	of the

Year V, v.2 2025 | submission: October 19, 2025 | accepted: October 21, 2025 | publication: October 23, 2025

Scientific name:		aromatherapy or topical use	high intake of essential by
Lavandula angustifolia, former Lavandula officinalis	ly		oils in or doses aromatherapy
Author: Lopes et al., 2017			
Author: Lopes et al., 2017 Popular name: Flower-of-	Complementary,	Tea: 1–2 cups/day; extract:	Excess tea or extract leading to
. ,	Complementary, phytotherapy	Tea: 1–2 cups/day; extract: 200–400 mg/day	Excess tea or extract leading to drowsiness
Popular name: Flower-of- Passion or Passion Fruit	1 27	, ,	•

Source: prepared by the authors.

According to Tables 1 and 2, the widespread use of medicinal plants and herbal medicines with therapeutic potential in the field of neurology, especially in conditions related to anxiety, depression and cognitive decline. Among the most studied species, Bacopa *monnieri, Curcuma longa, Ginkgo biloba* and *Piper methysticum,* whose bioactive compounds have neuroprotective, antioxidant and neurotransmitter modulating effects. These mechanisms contribute to the improvement of cognitive and emotional functions, demonstrating relevance in both the prevention and treatment of neurodegenerative diseases (Desai et al., 2025; Genchi et al., 2024; Souza et al., 2019; Tan et al., 2015).

However, although the results indicate promising therapeutic benefits, the use of these substances require caution. Several studies report that high doses, prolonged use without professional monitoring and drug interactions with conventional drugs can generate significant adverse effects, such as hepatotoxicity, gastrointestinal disorders, drowsiness excessive and increased risk of bleeding. Thus, the need for a adequate clinical monitoring and awareness regarding the safe use of these compounds (Desai et al., 2025; Genchi et al., 2024; Souza et al., 2019; Tan et al., 2015).

The data analyzed also indicate that the use of herbal medicines occurs predominantly as complementary therapy, usually in pharmaceutical forms such as infusions, extracts standardized and capsules. This context reinforces the importance of ensuring product quality and the standardization of dosages, so that the treatment is effective and safe (Carvalho et al, 2025).

Based on the evidence gathered, it is possible to propose practical recommendations to health professionals responsible for guiding patients who use herbal medicines and plants medicinal products. These recommendations aim to optimize therapeutic effects and reduce the risk of adverse events. adverse events. First, it is recommended to perform a detailed clinical evaluation of the patient before any prescription or indication of herbal medicines, considering the history of use

Year V, v.2 2025 | submission: October 19, 2025 | accepted: October 21, 2025 | publication: October 23, 2025 of conventional medications, the presence of comorbidities and possible allergies. This step is essential to prevent drug interactions and unwanted reactions.

Furthermore, it is essential that professionals provide guidance on the appropriate dosage, adjusting it according to the age, weight and clinical conditions of each patient, and warn about the dangers of overdose. Excessive use of concentrated teas, indiscriminate intake of oils essential and self-medication with multiple herbal remedies can cause serious adverse reactions. Continuous monitoring should also be encouraged, since prolonged use without medical supervision may result in toxicity, as observed in cases related to *Kava-kava*, whose prolonged use is associated with liver damage.

Another essential aspect is patient education and awareness. It is necessary to reinforce that, despite being natural products, herbal medicines are not risk-free, and that safety depends on correct use. Therefore, the patient must be guided on the appropriate forms of preparation, dose, frequency and possible interactions with food or medications. Finally, in case of appearance of adverse effects, such as nausea, dizziness, liver changes or symptoms exacerbated neurological symptoms, use should be immediately discontinued and the patient should seek medical attention. medical care for evaluation and appropriate management.

Overall, the evidence points to the importance of responsible clinical practice, based on the integration of traditional knowledge and evidence-based medicine. As also the need for long-term studies (in vivo) to investigate chronic hepatotoxicity in therapeutic doses (especially for Piper methysticum) and the urgency of research to to elucidate the toxicokinetics and toxicodynamics of the metabolites that cause adverse effects on the system central nervous system. The recommendations presented here can help promote more effective use safe and effective use of medicinal plants and phytotherapeutics, in line with the principles of biomedicine and of clinical pharmacy and contributing to the consolidation of a more therapeutic approach humanized and scientific in the care of neurological diseases.

4. CONCLUSION

This integrative review allowed us to identify that herbal medicines and medicinal plants have relevant therapeutic potential in the management of neurological diseases, including neurodegenerative disorders such as Alzheimer's and Parkinson's, epilepsy and disorders

Year V, v.2 2025 | submission: October 19, 2025 | accepted: October 21, 2025 | publication: October 23, 2025 psychoneurological. The observed mechanisms of action, such as anxiolytic, antioxidant, anti-inflammatory, neuroprotective and modulatory of cognitive function, show that these substances can act as a complement to conventional therapies, especially when used rationally and respecting appropriate dosage protocols, as per observed in *Bacopa monnieri*, *Curcuma longa*, *Ginkgo biloba*, *Piper methysticum* and *Passiflora incarnate*.

The data analyzed indicate, however, that the inappropriate or indiscriminate use of these products may result in significant adverse effects, including hepatotoxicity, disorders gastrointestinal disorders, neurological changes and drug interactions, which can compromise the effectiveness of conventional treatments and patient safety. These findings reinforce the need individualized clinical evaluation, continuous monitoring and professional guidance, especially in more vulnerable populations or those who use pharmacological medications concomitantly.

Additionally, the review highlights the existence of gaps in regulation, standardization and scientific proof of the efficacy and safety of these compounds. Thus, the development of rigorous clinical studies and the development of protocols becomes essential standardized therapeutics and the expansion of the dissemination of information on toxicity, interactions medication and dosage limits between healthcare professionals and patients.

In summary, although herbal medicines and medicinal plants demonstrate therapeutic benefits relevant, their use must always be based on scientific evidence, monitoring professional and appropriate patient education. The responsible integration of these practices into health care neurological health makes it possible to maximize desirable clinical effects and minimize associated risks and ensure safety and effectiveness in treatment, contributing to the consolidation of more comprehensive guidelines safe and well-founded for clinical practice and scientific research.

REFERENCES

ALMEIDA, JR; SILVA, FR; PEREIRA, LA Melissa officinalis L.: pharmacological properties, therapeutic potential and safety. Journal of Ethnopharmacology, vol. 299, p. 114–123, 2024.

BARBOSA, RA; PEREIRA, LS Use of herbal medicines in the treatment of neurological diseases: benefits and risks. Journal of Pharmacology and Therapeutics, v. 25, n. 4, p. 235-250, 2020. BORGES, Flávia Gomes et al. Promotion of phytotherapy in the treatment of neurological disorders. Research, Society and Development, vol. 11, no. 11, e22281111764, 2022.

BRAZIL. Ministry of Health. Medicinal plants and phytotherapeutics. Brasília, DF: Ministry of Health

Health, 2023. Available at: https://www.gov.br/saude/pt-br/composicao/sectics/plantas-

medicinal and herbal medicines. Accessed on: September 2, 2025.

CARVALHO, FM; FERREIRA, JS; PASSOS, LA The use of herbal medicines in the treatment of anxiety: a literature review. Research, Society and Development, v. 13, n. 6, e11813646095, 2025.

CHANDRAN, R. Identifying Plant-Based Natural Medicine against Oxidative Stress in Neurodegenerative Diseases. 2020. Available at:

https://pmc.ncbi.nlm.nih.gov/articles/PMC7519196/. Accessed on: October 16, 2025.

COSTA, MT; ALMEIDA, FC Regulation and safety in the use of herbal medicines: challenges and advances. Journal of Health Sciences, v. 15, n. 3, p. 178-193, 2022.

DESAI, V.; SHAIKHSURAB, MZ; VARGHESE, N.; ASHTEKAR, H. Assessing the antiinflammatory effects of Bacopa-derived bioactive compounds using network pharmacology and in vitro studies. In Silico Pharmacology, vol. 12, no. 2, p. 98, 2025.

GENCHI, G.; SANTORO, M.; PELLEGRINI, M.; et al. Neuroprotective Effects of Curcumin in Neurodegenerative Diseases. Foods, vol. 13, no. 11, p. 1774, 2024. DOI: 10.3390/foods13111774.

FATIMA, Urooj et al. Pharmacological attributes of Bacopa monnieri extract: Current updates and clinical manifestation. Frontiers in nutrition, vol. 9, p. 972379, 2022.

FREITAS, PF; SOUZA, DS The toxicity of natural medicines: implications for practice clinical practice in neurological diseases. Medical Research Notebooks, v. 31, n. 1, p. 22-35, 2021.

LIMA, MC et al. Use of medicinal plants and phytotherapeutics in Brazil: an integrative review. Brazilian Journal of Health Sciences, v. 19, n. 1, p. 67-74, 2021.

LOPES, V. et al. Exploring pharmacological mechanisms of lavender (*Lavandula angustifolia*). Frontiers in Pharmacology, vol. 8, p. 280, 2017.

Year V, v.2 2025 | submission: October 19, 2025 | accepted: October 21, 2025 | publication: October 23, 2025 | MENDONÇA NETO, IJ de; et al. Medicinal plants and herbal medications in the treatment of anxiety: a systematic review. Journal of Basic and Applied Pharmaceutical Sciences, v. 43, n. 3, p. 1-13, 2022.

MOREIRA, JR; GOMES, RL Adverse effects and drug interactions of herbal medicines: a review of toxicity in neurological treatments. Journal of Toxicology and Natural Medicines, v. 12, n. 2, p. 142-157, 2023.

WORLD HEALTH ORGANIZATION (WHO). Neurological disorders: public health challenges. Geneva: WHO, 2023.

ROCHA, LPB da. Use of medicinal plants: history and relevance. 2021. Available at: https://rsdjournal.org/rsd/article/download/18282/16571/230446. Accessed on: October 16, 2025.

SILVA, AP; CASTRO, RM Phytotherapeutics and their risks: review of toxicity and effects adverse effects in the treatment of neurological diseases. Brazilian Journal of Toxicology and Pharmacology, v. 28, no. 5, p. 1015-1027, 2019.

SOUSA, Francisca CF et al. Medicinal plants and their bioactive constituents: a review of bioactivity and potential benefits in anxiety disorders in animal models. Journal Brazilian Journal of Pharmacognosy, v. 32, p. 205–220, 2022.

SOUZA, AM et al. Kava-kava: toxicity and drug interactions. Journal of Toxicology and Pharmacology, vol. 10, no. 3, p. 54-63, 2019.

VELASQUEZ, ACA; et al. Effects of Passiflora incarnata and Valeriana officinalis in the control of anxiety due to tooth extraction: a randomized controlled clinical trial. *Journal of Clinical Medicine*, vol. 13, no. 1, p. 1-10, 2024.

TAN, MS; Yang, Y.; ZHANG, L.; WANG, H.F.; LIU, Y.; JIANG, T. Ginkgo biloba extract in the treatment of cognitive impairment and dementia: A systematic review of randomized clinical trials trials. Journal of Ethnopharmacology, vol. 175, p. 1-15, 2015.

ZENI, Francielle et al. Medicinal plants and phytotherapeutics in health promotion in anxiety disorder anxiety: a review of the literature supporting professionals. Infarma Journal – Sciences

Pharmaceuticals, v. 35, n. 1, p. 126-138, 2023