

Ano V, v.2 2025 | submissão: 01/11/2025 | aceito: 03/11/2025 | publicação: 05/11/2025 Análise numérica e considerações normativas sobre ações térmicas em estruturas metálicas compactas

Numerical analysis and normative considerations on thermal actions in compact steel structures

Matheus Felipe Azevedo – Faculdade Pitágoras - matheusfelipeaz@gmail.com

Resumo

Este trabalho investiga os efeitos da variação térmica em estruturas metálicas com diferentes configurações geométricas e níveis de rigidez, por meio de modelagem numérica no software RSTAB. A análise considera exclusivamente ações térmicas indiretas, aplicadas a modelos de mezaninos baixos rigidamente conectados a uma plataforma estrutural. Foram avaliadas estruturas com diferentes alturas e com ou sem travamento intermediário, a fim de quantificar o impacto da restrição à deformação térmica sobre os esforços internos. Os resultados demonstram que, mesmo em estruturas de dimensões reduzidas, a limitação à livre dilatação pode gerar tensões internas significativas, especialmente em sistemas com vínculos rígidos. A comparação entre os modelos evidencia que a rigidez global da estrutura influencia diretamente a redistribuição dos esforços térmicos. As conclusões reforçam a importância de seguir as diretrizes estabelecidas por normas técnicas como a ABNT NBR 8800:2024, EN 1991-1-5:2003 e ANSI/AISC 360-22, que reconhecem a ação térmica como variável indireta relevante no dimensionamento de estruturas metálicas.

Palavras-chave: Variação térmica. Estruturas metálicas. Esforços internos. Rigidez estrutural. Modelagem numérica.

Abstract

This study examines the effects of thermal variation on steel structures with different geometric configurations and stiffness levels through numerical modeling using RSTAB software. The analysis focuses exclusively on indirect thermal actions applied to low mezzanine models rigidly connected to a structural platform. Structures with varying heights and with or without intermediate bracing were evaluated to quantify the impact of thermal deformation constraints on internal forces. The results show that even in compact structures, restrictions on free expansion can generate significant internal stresses, especially in systems with rigid connections. The comparison between models highlights that the overall stiffness of the structure directly influences the redistribution of thermal forces. The findings underscore the importance of adhering to technical standards such as ABNT NBR 8800:2024, EN 1991-1-5:2003, and ANSI/AISC 360-22, which recognize thermal action as a relevant indirect variable in the design of steel structures.

Keywords: Thermal variation. Steel structures. Internal forces. Structural stiffness. Numerical modeling.

1. Introdução

A variação térmica é reconhecida pelas normas técnicas como uma ação indireta que pode influenciar o comportamento estrutural de sistemas metálicos. Sua relevância depende de fatores como amplitude térmica, propriedades dos materiais, condições de contorno e liberdade para deformações (Pfeil & Pfeil, 2017; Fakury et al., 2015).

Em estruturas isostáticas, os efeitos térmicos tendem a ser desprezíveis. Já em sistemas hiperestáticos ou com vínculos rígidos, a restrição à dilatação pode induzir tensões internas significativas. As normas ABNT NBR 8800:2024, EN 1991-1-5:2003 (Eurocode 1 – Parte 1-5) e ANSI/AISC 360-22 tratam essas ações como variáveis indiretas, recomendando sua consideração quando houver impedimentos ao movimento livre dos elementos estruturais.

Este trabalho tem como objetivo investigar, por meio de modelagem numérica, o impacto da variação térmica sobre os esforços internos em estruturas metálicas simples, com diferentes configurações geométricas e níveis de rigidez. A análise busca quantificar o grau de influência das ações térmicas no comportamento estrutural, com base em critérios normativos e técnicos, contribuindo para o entendimento da resposta térmica em sistemas metálicos.

2 Marco Teórico

2.1 Ações Térmicas em Estruturas Metálicas

A variação térmica é classificada como uma ação indireta que pode induzir esforços internos relevantes em estruturas metálicas, sobretudo naquelas com vínculos rígidos ou elevado grau de hiperestaticidade. A dilatação ou contração dos elementos estruturais, provocada por variações de temperatura, pode gerar tensões internas, deslocamentos e redistribuições de esforços que afetam o desempenho global da estrutura. Esses efeitos são mais pronunciados quando há restrição à livre deformação dos elementos, como ocorre em estruturas soldadas ou com continuidade elevada.

2.2 Abordagens Normativas

As principais normas técnicas reconhecem a importância das ações térmicas, embora adotem abordagens distintas. A norma europeia EN 1991-1-5:2003 (Eurocode 1 – Parte 1-5) apresenta uma modelagem detalhada, distinguindo componentes de temperatura uniformes e diferenciais, além de fornecer perfis térmicos típicos para diferentes tipos de estruturas. Já a norma brasileira ABNT NBR 8800:2024 trata a variação térmica como uma ação variável indireta, remetendo à NBR 6120:2019 para definição de valores característicos e coeficientes de ponderação. A norma americana ANSI/AISC 360-22, por sua vez, orienta que os efeitos térmicos sejam considerados sempre que houver restrição ao movimento dos elementos, embora não forneça perfis térmicos específicos.

A comparação entre essas normas revela que, enquanto o Eurocode fornece diretrizes mais completas para a modelagem térmica, a NBR 8800 e a AISC 360-22 adotam uma abordagem mais genérica, exigindo julgamento técnico por parte do projetista. Essa diferença pode impactar diretamente a forma como os efeitos térmicos são considerados em projetos práticos.

A norma ABNT NBR 8800:2024, que rege o projeto de estruturas de aço e mistas no Brasil, também reconhece os efeitos da variação térmica como ações variáveis indiretas. Embora não apresente detalhamento específico sobre perfis térmicos, remete à NBR 6120:2019 para definição das ações e coeficientes de ponderação. A NBR 8800 estabelece que, em estruturas industriais, a distância entre subestruturas de contraventamento não deve exceder 60 m quando a variação térmica não for considerada explicitamente na análise, recomendando o uso de juntas de dilatação e dispositivos de

Ano V, v.2 2025 | submissão: 01/11/2025 | aceito: 03/11/2025 | publicação: 05/11/2025 alívio de tensões térmicas (Fakury et al., 2015).

Complementarmente, a norma americana ANSI/AISC 360-22 trata as ações térmicas como cargas indiretas que devem ser consideradas quando houver restrição ao movimento dos elementos. Embora não forneça perfis térmicos específicos, ela orienta que os efeitos térmicos sejam incluídos na análise estrutural sempre que possam influenciar os estados limites de resistência ou de serviço. A norma também destaca a importância de considerar a compatibilidade de deformações em estruturas compostas e em sistemas com diferentes materiais.

2.3 Considerações Técnicas sobre Restrições e Deformações

Autores como Pfeil & Pfeil (2017) e Fakury et al. (2015) destacam que a restrição à dilatação térmica pode gerar tensões internas significativas, inclusive em sistemas de dimensões reduzidas. A presença de vínculos rígidos, ausência de juntas de dilatação e continuidade estrutural elevada são fatores que intensificam esses efeitos. Em estruturas isostáticas, os deslocamentos térmicos tendem a ser acomodados sem geração de esforços relevantes. No entanto, em sistemas hiperestáticos, a incompatibilidade de deformações pode comprometer os estados limites de serviço e a integridade das ligações.

Assim, a decisão de considerar ou não a ação térmica deve ser baseada em uma análise criteriosa das condições de contorno, da geometria da estrutura e da amplitude térmica esperada. O uso de dispositivos como apoios deslizantes, juntas de dilatação e detalhamento adequado das ligações são estratégias eficazes para mitigar os efeitos da variação térmica.

3. Material e Método

A metodologia adotada baseia-se em modelagem numérica, com foco na influência da rigidez, das condições de contorno e da geometria dos elementos. Foram comparadas diferentes configurações estruturais, com e sem a consideração de ações térmicas, conforme previsto nas normas técnicas aplicáveis.

As simulações foram realizadas no software Dlubal RSTAB 8.28, amplamente utilizado em engenharia estrutural para análise de estruturas reticuladas. Os modelos foram construídos com elementos de barra tridimensionais, com seis graus de liberdade por nó, permitindo a consideração de esforços axiais, flexão, torção e deslocamentos laterais. O material adotado foi o aço estrutural ASTM A36, com módulo de elasticidade de 210 *GPa* e coeficiente de dilatação térmica de $\alpha \approx 12 \times 10^{-6}$ ° C^{-1} .

3.1 Modelos Estruturais

Foram desenvolvidos quatro modelos principais, todos representando estruturas metálicas

de mezaninos baixos com planta quadrada de 2000 mm × 2000 mm. Os modelos diferenciam-se pela altura total da estrutura (250 mm, 500 mm e 1000 mm) e pela presença ou ausência de uma viga de travamento horizontal intermediário à meia altura da coluna. Essa variação geométrica permite avaliar o impacto da rigidez global e da configuração estrutural sobre os efeitos da variação térmica.

3.2 Condições da Análise

A análise foi conduzida com foco exclusivo na ação térmica indireta, sem a consideração de ações gravitacionais ou de uso. Essa escolha visa isolar os efeitos da variação de temperatura sobre a estrutura, conforme diretrizes da EN 1991-1-5:2003 (Eurocode 1 – Parte 1-5).

Foi aplicado um incremento uniforme de temperatura de 30 °C a todos os elementos estruturais, representando uma condição crítica de exposição solar intensa. Esse valor foi adotado com base em exposições típicas ao sol em regiões tropicais brasileiras, como Belo Horizonte, Salvador e Rio de Janeiro. A ação térmica foi modelada como carga indireta, gerando esforços internos devido à contenção dos deslocamentos térmicos.

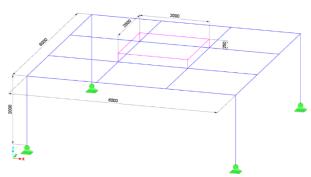
3.3 Parâmetros Avaliados

Os resultados das simulações foram analisados com foco na resposta estrutural à variação térmica, considerando os seguintes parâmetros:

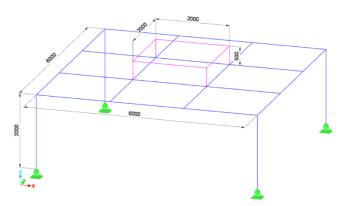
- Alongamento axial das vigas;
- Esforços axiais das vigas:
- Momentos fletores nas colunas, nós de ligação com as vigas analisadas;
- Diferença de dilatação térmica entre os elementos estruturais.

A análise numérica busca identificar se os elementos estruturais apresentam dilatações compatíveis entre si, permitindo uma expansão térmica global harmônica, ou se há incompatibilidades que resultam em esforços internos significativos. Essa avaliação é essencial para compreender como a rigidez global da estrutura e as condições de contorno influenciam a redistribuição dos esforços térmicos.

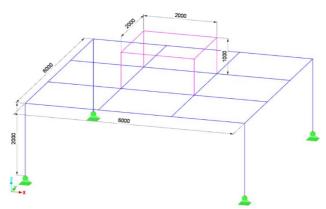
A modelagem foi conduzida com base em diretrizes normativas e evidências da literatura técnica. Conforme destacado por Pfeil & Pfeil (2017), a presença de vínculos rígidos e a ausência de dispositivos de alívio, como juntas de dilatação, podem gerar tensões internas relevantes, mesmo em estruturas de escala reduzida. Ao comparar diferentes configurações geométricas e níveis de rigidez, pretende-se compreender em que medida a variação térmica afeta os esforços internos e deslocamentos, contribuindo para decisões de projeto mais fundamentadas.


3.4 Modelagem computacional

3.4.1 Configuração dos Modelos no RSTAB 8.28


A modelagem computacional foi realizada no software Dlubal RSTAB 8.28, utilizando elementos de barra tridimensionais com seis graus de liberdade por nó. O modelo estrutural é composto por dois subsistemas: o mezanino metálico e uma plataforma de piso, esta última representando parte de uma edificação industrial. A plataforma foi modelada com barras maciças de seção quadrada de 250 mm × 250 mm em aço ASTM A36, com ligações rígidas entre si e com os elementos do mezanino.

O mezanino é composto por colunas verticais e vigas horizontais com seção quadrada maciça de 100 mm × 100 mm, também em aço ASTM A36. As conexões entre todos os elementos foram consideradas completamente rígidas, simulando soldas em campo. As Figuras 1 a 4 apresentam a geometria dos modelos simulados, que variam conforme a altura da estrutura e a presença ou não de viga de travamento intermediário das colunas.


Figura 1 - Geometria do modelo com 250 mm de altura (sem travamento intermediário) (Fonte: Elaborado pelo próprio autor)

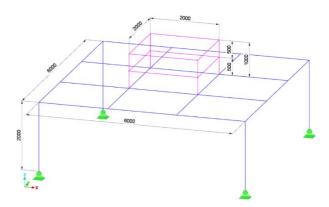

Figura 2 - Geometria do modelo com 500 mm de altura (sem travamento intermediário) (Fonte: Elaborado pelo próprio autor)

Figura 3 - Geometria do modelo com 1000 mm de altura (sem travamento intermediário) (Fonte: Elaborado pelo próprio autor)

Figura 4 - Geometria do modelo com 1000 mm de altura (com travamento intermediário) (Fonte: Elaborado pelo próprio autor)

A inclusão da viga de travamento no modelo com 1000 mm de altura permite avaliar sua influência na redistribuição dos esforços térmicos. A comparação entre os modelos fornece subsídios para compreender como a rigidez global da estrutura afeta a compatibilidade de deformações e a geração de tensões internas sob variação térmica.

3.4.2 Aplicação das Ações

O objetivo principal deste estudo é avaliar os efeitos da variação térmica em estruturas metálicas com diferentes graus de rigidez. Por esse motivo, foram aplicadas exclusivamente ações térmicas indiretas, sem a consideração de ações gravitacionais ou de uso.

A ação térmica foi modelada como um incremento uniforme de temperatura de 30 °C aplicado a todos os elementos estruturais. Esse valor representa uma condição crítica de exposição solar intensa, conforme diretrizes da EN 1991-1-5:2003, e é compatível com variações térmicas observadas em regiões tropicais brasileiras.

O valor teórico de alongamento térmico de um elemento estrutural foi calculado com base na equação clássica da dilatação linear:

$$Ano\ V,\ v.2\ 2025\ |\ submiss\~ao:\ 01/11/2025\ |\ aceito:\ 03/11/2025\ |\ publica\~c\~ao:\ 05/11/2025$$

Eq. 1

Onde:

 ΔL = alongamento linear (mm);

 α = coeficiente de dilatação térmica linear do aço ($\alpha \approx 12 \times 10^{-6} \, {}^{\circ}C^{-1}$);

 $\Delta L = \alpha \cdot L_0 \cdot \Delta T$

 L_0 = comprimento inicial do elemento (mm);

 ΔT = variação de temperatura (°C).

3.4.3 Estratégia de Análise

A análise foi conduzida no regime linear estático, considerando o comportamento elástico linear dos materiais e a ausência de efeitos de segunda ordem. Essa abordagem é adequada para a avaliação inicial dos efeitos térmicos em estruturas com vínculos rígidos, permitindo a identificação de deslocamentos e tensões induzidas exclusivamente pela restrição à dilatação térmica.

Além disso, o esforço normal térmico gerado em um elemento com restrição à dilatação pode ser estimado pela equação:

$$N = E \cdot A \cdot \alpha \cdot \Delta T$$
 Eq. 2

Onde:

N =esforço axial induzido (N);

E = m'odulo de elasticidade do aço (210 GPa);

A =área da seção transversal do elemento (mm^2) ;

 α = coeficiente de dilatação térmica linear;

 ΔT = variação de temperatura (°C).

Essa relação evidencia que, para uma mesma variação térmica, elementos com maior área de seção transversal desenvolverão maiores esforços internos.

A Tabela 1 apresenta os principais resultados obtidos nas simulações, incluindo os alongamentos térmicos e os esforços normais desenvolvidos nas vigas superiores, inferiores e, quando aplicável, na viga de travamento intermediário.

Tabela 1 - Resumo dos resultados da análise no software

Modelo	Descrição da barra	Alongamento (milímetros)	Esforço normal (kN)	Momento fletor na coluna (kN.m)
Mezanino altura 250mm	Viga acima da coluna	0,7242	4,19	-0,01
	Viga de piso abaixo da coluna	0,7194	-4,32	1,03
Mezanino altura 500mm	Viga acima da coluna	0,7214	1,47	-0,04
	Viga de piso abaixo da coluna	0,7198	-1,64	0,69
Mezanino altura 1000mm	Viga acima da coluna	0,7204	0,44	-0,05
	Viga de piso abaixo da coluna	0,7200	-0,62	0,39
Mezanino altura	Viga acima da coluna	0,7198	-0,28	0,01

Ano V, v.2 2025 | submissão: 01/11/2025 | aceito: 03/11/2025 | publicação: 05/11/2025

1000mm (com travamento)	Viga de travamento da coluna	0,7220	2,06	-0,16
	Viga de piso abaixo da coluna	0,7196	-1,95	0,74

A Tabela 1 resume os resultados obtidos para os diferentes modelos simulados, permitindo observar como a variação térmica afeta os esforços internos mesmo em estruturas de dimensões reduzidas. Nota-se que, embora todos os elementos sejam compostos por materiais com o mesmo coeficiente de dilatação térmica, os efeitos da restrição impostam pelas condições de contorno - especialmente as ligações engastadas - geram incompatibilidades de deformação entre as vigas superiores e inferiores. Essa incompatibilidade é mais acentuada nos modelos com colunas mais curtas, o que indica que a rigidez do conjunto formado por viga de piso, colunas e viga superior (comportando-se como um quadro rígido) influencia diretamente a redistribuição dos esforços térmicos. No modelo com travamento intermediário, observa-se que parte da dilatação é absorvida pela viga de travamento, alterando o equilíbrio interno do sistema. Esses resultados demonstram que, mesmo quando os materiais possuem propriedades térmicas semelhantes, a configuração estrutural e os vínculos adotados podem gerar tensões internas significativas, o que reforça a necessidade de considerar a ação térmica no dimensionamento das estruturas.

4. Resultados e Discussão

A análise dos resultados apresentados na Tabela 1 permite avaliar os efeitos da variação térmica em estruturas metálicas com diferentes configurações geométricas e de rigidez. Mesmo em estruturas de dimensões reduzidas, a aplicação de uma variação térmica uniforme foi capaz de induzir esforços internos significativos, especialmente em sistemas com vínculos rígidos. A comparação entre os modelos evidencia que a altura da estrutura e a presença de travamento intermediário influenciam diretamente a distribuição dos esforços normais e os alongamentos térmicos, confirmando a hipótese de que a restrição à dilatação pode gerar tensões internas relevantes.

Nos modelos sem travamento intermediário, observou-se que a redução da altura do mezanino intensifica os esforços de compressão nas vigas de piso e os momentos fletores na base das colunas. Por exemplo, no modelo com altura de 250 mm, a viga superior apresentou esforço axial de 4,19 kN, enquanto a viga de piso atingiu -4,32 kN, com momento fletor de 1,03 kN·m na base da coluna. Além disso, o alongamento da viga superior foi de 0,7242 mm (0,0042 mm acima do valor teórico que seria de 0,7200 mm se calculado conforme a Eq. 1) indicando que a restrição imposta pelas colunas mais curtas intensifica a redistribuição de deformações.

No modelo com travamento intermediário (modelo 4), a viga de travamento absorveu parte da deformação térmica, apresentando tração de 2,06 kN, enquanto a viga superior apresentou leve compressão (-0,28 kN) e alongamento de 0,7198 mm (0,0002 mm abaixo do valor teórico). A viga de

travamento, por sua vez, alongou 0,7220 mm, 0,0020 mm acima do esperado, evidenciando que parte da dilatação térmica foi redistribuída para esse elemento intermediário. Essa redistribuição também se refletiu nos momentos fletores ao longo da coluna, com valores de 0,74 kN·m na base, -0,16 kN·m no nó intermediário e 0,01 kN·m no topo.

Segundo Pfeil & Pfeil (2017), estruturas metálicas com vínculos rígidos e continuidade elevada são particularmente sensíveis a variações térmicas, pois a dilatação dos elementos é restringida, gerando tensões internas mesmo na ausência de carregamentos externos. Fakury et al. (2015) reforçam que a consideração das ações térmicas é essencial em estruturas hiperestáticas, uma vez que a omissão desses efeitos pode comprometer os estados limites de serviço e a integridade das ligações.

Além disso, os resultados obtidos evidenciam que, ao instalar uma nova estrutura sobre uma plataforma existente - mesmo que ambas sejam de aço e compartilhem propriedades térmicas semelhantes, a configuração global do sistema se altera, modificando a matriz de rigidez e, consequentemente, os esforços internos. Isso reforça a necessidade de avaliar a estrutura como um todo, considerando as interações entre os subsistemas e os efeitos indiretos da variação térmica.

Considerações Finais

Os resultados obtidos neste estudo demonstram que a variação térmica pode induzir esforços internos significativos mesmo em estruturas metálicas de pequenas dimensões, quando submetidas a vínculos rígidos e elevada continuidade. A análise numérica evidenciou que a rigidez global da estrutura, influenciada pela altura das colunas e pela presença de travamentos intermediários, afeta diretamente a compatibilidade de deformações e a redistribuição dos esforços térmicos.

Embora os materiais utilizados compartilhem propriedades térmicas semelhantes, como o coeficiente de dilatação, a configuração estrutural e as condições de contorno impõem restrições que resultam em tensões internas não desprezíveis. Esses achados reforçam a importância de considerar as ações térmicas no dimensionamento de estruturas metálicas, conforme orientam as normas ABNT NBR 8800:2024, EN 1991-1-5:2003 e ANSI/AISC 360-22.

Conforme destacado por Pfeil & Pfeil (2017), "a dilatação térmica, quando impedida, gera esforços que devem ser considerados no projeto, mesmo em estruturas de pequeno porte". Essa afirmação, alinhada às diretrizes normativas, sustenta a necessidade de uma abordagem criteriosa na avaliação dos efeitos térmicos, evitando tanto a omissão de ações relevantes quanto o superdimensionamento.

Portanto, conclui-se que a consideração da variação térmica deve ser incorporada à análise estrutural sempre que houver restrições significativas à livre deformação dos elementos, independentemente da escala da estrutura. A adoção de critérios normativos e o uso de ferramentas

Ano V, v.2 2025 | submissão: 01/11/2025 | aceito: 03/11/2025 | publicação: 05/11/2025 de modelagem adequadas são fundamentais para garantir a segurança, a durabilidade e a racionalidade das soluções estruturais.

Referências

AMERICAN INSTITUTE OF STEEL CONSTRUCTION. *ANSI/AISC 360-22: Specification for Structural Steel Buildings.* Chicago: AISC, 2022.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 6120: Ações e segurança nas estruturas. Rio de Janeiro: ABNT, 2019.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 8800: Projeto de estruturas de aço e de estruturas mistas de aço e concreto de edificios. Rio de Janeiro: ABNT, 2024.

EUROPEAN COMMITTEE FOR STANDARDIZATION. *EN 1991-1-5: Eurocode 1 – Actions on structures – Part 1-5: General actions – Thermal actions.* Brussels: CEN, 2003.

FAKURY, R. H.; SILVA, A. L. R. C.; CALDAS, R. B. Dimensionamento de elementos estruturais de aço e mistos de aço e concreto. São Paulo: Pearson, 2016.

PFEIL, W.; PFEIL, M. Estruturas de aço: dimensionamento prático de acordo com a NBR 8800:2008. Rio de Janeiro: LTC, 2017.