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SUMMARY

The increasing sophistication of deepfakes has heightened the urgency for robust Deep Learning
detection systems. However, the "black box" nature of Computer Vision models, such as Convolutional
Neural Networks (CNNs) and Transformers, represents a significant obstacle to their acceptance in
critical domains such as forensics and law. This article explores the application of Explainable Artificial
Intelligence (XAI) techniques in the context of deepfake detection , investigating how the transparency
and interpretability of the models can be achieved. Post-hoc and intrinsic methodologies, such as
CAMs (Class Activation Maps), SHAP, and LIME, will be discussed , analyzing their ability to generate
visual and logical evidence about the classification process, specifically identifying the regions of the
image or video (artifacts) that are determinant for the falsity decision. The primary objective is to
demonstrate that XAl integration is indispensable for building the necessary trust in detection systems,
transforming algorithmic decisions into verifiable expert evidence, essential for establishing the validity
and admissibility of these technologies in courts and investigations.
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ABSTRACT

The increasing sophistication of deepfakes has escalated the urgency for robust Deep Learning
detection systems. However, the "black-box" nature of Computer Vision models, such as Convolutional
Neural Networks (CNNs) and Transformers, poses a significant barrier to their acceptance in critical
domains such as forensics and law. This paper explores the application of Explainable Artificial
Intelligence (XAI) techniques within the context of deepfake detection, investigating how model
transparency and interpretability can be achieved. We discuss post-hoc and intrinsic methodologies,
such as CAMs (Class Activation Maps), SHAP, and LIME, analyzing their capacity to generate visual
and logical evidence regarding the
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classification process, specifically identifying the regions of the image or video (artifacts) that
are decisive for the forgery decision. The primary objective is to demonstrate that the integration
of XAl is indispensable for building the necessary trust in detection systems, transforming the
algorithmic decision into verifiable expert evidence, which is essential for establishing the
validity and admissibility of these technologies in courts and investigations.

Keywords: XAl; Deepfake; Interpretability; Transparency; Digital Forensics; Computer Vision;
Trust.

1. INTRODUCTION: THE IMPERATIVE OF EXPLANABILITY IN FORENSICS
DIGITAL

The rapid advancement of deepfake creation methods has set a new standard of challenges
for society, demanding equally sophisticated Artificial Intelligence (Al) countermeasures.
Computer Vision models, such as complex deep Convolutional Neural Networks (CNNs)
and emerging Vision Transformers (ViTs), have demonstrated high accuracy in distinguishing
between authentic and falsified media. However, this high performance is achieved at the cost
of transparency, resulting in a "black box" architecture where the final decision is a
mathematical mystery, inaccessible even to its developers. This opacity is at the heart of the
problem when deepfake detection is applied in high-responsibility contexts, such as forensic
investigations and legal litigation, where a simple declaration of "false" by an algorithm is
insufficient to be considered evidence.

In a legal setting, expert evidence must be verifiable, replicable, and, above all, logically
justified. The reliability of a deepfake detection system is called into question if the expert
cannot clearly and intuitively present to the judge which characteristics of the video led the
model to classify the content as forged. If CNN is focusing on a compression artifact instead of
an inconsistency in facial geometry, the decision may be erroneous, but the opacity of the
model prevents this critical distinction. Therefore, Explainable Artificial Intelligence (XAl)
emerges not only as an improvement but as a methodological imperative to ensure the
admissibility and validity of deepfake detection results in any process that requires a rigorous
standard of...

proof.

The central objective of this article is to provide a theoretical and practical framework for
integrating XAl techniques into the deepfake detection pipeline . We will analyze how key
explainability methodologies can be adapted to the forensic domain, transforming the detector's
binary output (real or fake) into an expert report with visual and weighted evidence. The
relevance of this topic lies in the need to build a bridge between the predictive capacity of
advanced Al and the requirement for rational justification in legal systems, promoting a
level of trust and traceability that is currently nonexistent in traditional opaque models.

The research will delve into the differentiation between model-agnostic and model-specific
explainability techniques , evaluating their applicability in identifying deepfake artifacts.
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which vary in subtlety and location (from pixel micro-artifacts to global illumination
inconsistencies). The goal is to strengthen detection, ensuring that the model is not "cheating"
by learning spurious correlations (such as watermarks from training datasets or metadata)
instead of the true signatures of manipulation. Ultimately, the adoption of XAl transcends
mere algorithmic interpretation; it is the foundation for building a responsible and ethically
grounded digital defense system.

2. The Nature of the "Black Box" and the Challenge of Reliability
FORENSIC

The rise of Deep Learning in Computer Vision tasks has been marked by a paradigm shift:
exponential gains in accuracy have been achieved at the cost of interpretability. Deepfake
detection models , such as deep CNNs (e.g., ResNet, XceptionNet) and ViTs, are composed
of millions or even billions of parameters arranged in complex layers, where non-linear
transformations make the mapping from input (the video) to output (the classification)
inherently opaque. This opacity, known as the "black box" problem, generates fundamental
distrust in any environment where system failure could have serious and irreversible
consequences, with the legal system being the most prominent example.

In a forensic context, the reliability of digital evidence depends on its traceability and
justification. When an expert presents a report alleging that a video is a deepfake, this
conclusion cannot be based solely on the 98% probability of falsity result issued by an
unknown algorithm. The judge, lawyers, and jury need to understand why ; the model must
point out, with spatial and temporal precision, the characteristics (or lack thereof) that
corroborate the manipulation thesis, transforming the probabilistic prediction into causal
evidence. The absence of this explicit justification prevents the adversarial process and
technical criticism of the evidence, violating basic principles of due process.

The black-box challenge in deepfake detection is exacerbated by the adversarial nature of
the problem itself. Without XAl, it is impossible to guarantee that the model is not focusing on
spurious artifacts that accidentally correlate with the "fake" class in the training dataset.
Examples of this include models that learn to identify the invisible watermark of a codec or
the edges of the bounding box used in the face swapping phase , instead of the flaw in skin
texture or shadows. Such correlations are fragile and break down under minimal variation,
rendering the model useless for generalization and completely inadmissible as reliable
evidence, since the cause of the classification is not the deepfake, but a production artifact of
the dataset.

Therefore, the implementation of XAl in deepfake detection is an ethical and legal necessity.
which transcends mere academic curiosity. It is the only way to mitigate opacity, allowing the
forensic community and the judiciary to audit the algorithm's decision-making process. By

transforming the black box into a glass box, where the nuances of the decision become apparent.
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As these findings are evident, XAl not only validates the high accuracy of Deep Learning models, but also elevates
their decision from a technical suggestion to a piece of expert evidence with high probative value, essential for

combating disinformation in the age of synthetic media.

3. Post-hoc XAl Techniques : Activation Maps and Resource Allocation

Post-hoc XAl techniques are the most common group of explainability methodologies, as they can be applied to
any already trained deepfake detection model without needing to modify its internal architecture. These techniques
focus on measuring the contribution and influence of each input feature (pixels or pixel regions) on the model's
final prediction. In the Computer Vision domain, two main categories dominate: Class Activation Maps (CAMSs)

and Feature Attribution methods .

Class Activation Maps (CAMs) and their variations (such as Grad-CAM and Grad-CAM++) are visual tools that
provide a heatmap over the input image, highlighting the regions most relevant for classification. In a deepfake
detection context, a successful Grad-CAM should focus on areas containing manipulation artifacts, such as facial
fusion lines, inconsistencies in the eyes/mouth, or discrepancies in lighting and skin texture. If the model

is correctly focused, the heatmap should concentrate on the forgery points. This visualization is extremely valuable
for forensics, as it transforms an abstract numerical decision into intuitive and spatially localized visual evidence,
allowing the expert to identify whether the model is detecting the actual manipulation flaw or irrelevant background

noise.

In parallel, Feature Assignment methods , such as SHAP (Shapley Additive exPlanations) and LIME (Local
Interpretable Model-agnostic Explanations), provide a more numerical and causal justification. SHAP, based
on Shapley's game theory, calculates the marginal contribution value of each pixel or image patch to the probability
of falsity. It provides a set of Shapley values that quantify the exact weight of each region in the final classification,
ensuring that the explanation is globally consistent and locally faithful. LIME, in turn, builds a locally interpretable

linear model (close to the data point being explained) to approximate the complex behavior of the black-box model.

The applicability of these post-hoc methods in deepfake detection lies in their ability to audit and validate model
bias . If a SHAP or Grad-CAM consistently assigns high importance to areas outside the manipulated facial region
(e.g., the watermark in the corner of the video), this indicates that the model has overfitted to a spurious dataset
artifact . The limitation of these methods is that they provide only a local explanation (the explanation is only
accurate for the video under analysis, and not for the overall behavior of the model) and can be computationally
expensive (like SHAP), which impacts the real-time analysis of long videos. However, for the preparation of offline

expert reports , the richness and depth of these methods are significant.
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These causal explanations are an invaluable resource, establishing the basis for technical evidence in court.

4. Intrinsic Techniques and the Transition to Inherently Interpretable Models

Although post-hoc methods are essential for auditing existing models, the research trend in XAl points towards the
creation of inherently interpretable models or intrinsic techniques. These approaches aim to incorporate the
explainability mechanism directly into the neural network architecture, ensuring that the final decision is logically
traceable by design, and not by retrospective analysis. The search for intrinsically interpretable models is a direct
response to the inherent weakness of post-hoc methods , whose explanation is always an approximation and can

be misleading if the underlying model is extremely complex.

In the field of Computer Vision for deepfake detection , this manifests itself in the use of architectures that explicitly
learn to separate semantic representation from artifact representation. A theoretical example is the use of
Prototype-Based Models, where classification is not done by an opaque decision boundary, but by similarity to
visual "prototypes" stored in a latent layer, representing canonical examples of real and fake faces. The explanation
for classifying a fake video would then be the simple presentation of the most similar deepfake prototype to which

the video resembles, providing a highly intuitive justification by analogy for humans.

The greatest contribution to intrinsic interpretability in deepfake detection comes, ironically, from the Transformer
architecture and its self-attention mechanism . The attention map naturally generated by the Transformer, which
indicates how the model weights different patches of the image to construct its representation, can be directly
interpreted as a relevance map. While not a complete causal explanation in the SHAP sense, the attention map is
an intrinsic tool that reveals where the model is "looking." If the detection model is focused on lighting anomalies or

the edges of the facial mask applied in the deepfake, the attention matrix will reflect this weighting concentration.

The great advantage of intrinsically interpretable models is the inherent confidence they provide, since the
explanation is not a byproduct but an integral part of the inference process. This simplifies deployment in forensic
environments, as the expert report can be based on a process that is, by definition, transparent. However, the
design of these architectures is a challenge, as the constraint on interpretability can, paradoxically, limit the
predictive capacity of the model, forcing a trade-off between performance and transparency. The research field
relentlessly seeks to mitigate this trade-off, developing models that are simultaneously highly accurate and

perfectly traceable in their decision-making logic.
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5. XAl IN COMBATING BIAS AND VALIDATING GENERALIZATION

The strategic use of Explainable Artificial Intelligence (XAl) in deepfake detection .

It transcends the mere justification of a single classification; it becomes a critical tool for
validating generalization and combating algorithmic bias. As discussed in comparative
studies, the main weakness of deepfake detection models is their tendency to fail on unseen
data (cross-dataset generalization), which is often a symptom that the model has learned
spurious correlations in the training data. XAl provides the necessary microscope to identify
and correct this undesirable behavior.

By applying techniques like Grad-CAM or SHAP on a large scale to a validation dataset,
experts can perform a feature audit . If the model, across all videos classified as "fake," is
consistently focusing on metadata or a uniform compression artifact , this reveals a dataset
bias . The detector is not learning to manipulate the concept of facial falsification, but rather to
detect the fingerprint of the training dataset creation process. This discovery, facilitated by XAl,
allows researchers to retrain the model using data augmentation techniques.

more robust methods (such as introducing different levels of compression) or forcing the model
to ignore areas of spurious artifacts through attention masking.

Validating generalization capacity also benefits immensely from XAl.

When a model trained on a dataset (e.g., FaceForensics++) shows a drop in accuracy on an
unseen dataset (e.g., CelebDF-V2), XAl can diagnose the cause of this failure. If the XAl
explanations of the "fake" videos in the original dataset focus on a low-frequency artifact, but
the model fails to produce a coherent heatmap for the fake videos in the new dataset, the
evidence is clear: the deepfake in the new dataset does not possess the same artifact, and the
old model failed to generalize to a more complex semantic manipulation feature .

The continued use of XAl in the development pipeline, therefore, transforms into a feedback and correction
mechanism . It ensures that detection models are trained to focus on falsity invariants — the logical and physical
flaws that are difficult to eliminate for any generator, such as inconsistency in global illumination or error in mapping
the 3D geometry of the face — rather than easily eliminable implementation artifacts. This approach not only

increases robustness against unseen deepfakes but also underpins the scientific reliability of the model.

6. Forensic and Legal Implications of the Model's Transparency

The transition from opaque detection to Explainable Artificial Intelligence (XAl) has profound
and transformative implications for the forensic and legal spheres. The main barrier to the
adoption of Al systems in courts is not a lack of accuracy, but the inability to...
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To meet the scientific proof standard, which requires the methodology to be auditable, understandable, and capable
of being refuted by an expert from the opposing party, XAl is the tool that unlocks this admissibility, transforming the

algorithm's decision into robust expert evidence.

In a legal proceeding, the model's explanation becomes the expert report itself. A Grad-

CAM heat map, for example, can be attached to the report to visually demonstrate that the

model based its "false" classification on the interpolation failure around the jaw (a common

area for artifacts) and not on a random blemish in the background of the video. Similarly,

Shapley values can be used to quantify the magnitude of the falsity artifact.

In terms of the probability of manipulation, providing a numerical measure of the certainty of

the decision that is transparent and logically sound. The absence of this explicit statement

leaves the evidence vulnerable to being classified as "black box evidence" and therefore inadmissible.

The transparency generated by XAl also facilitates the adversarial process and the Daubert
Standard (in jurisdictions that use it), where scientific evidence must be testable, peer-reviewed,
and have a known error rate. With XAl, the opposing party's lawyer can analyze whether the
model is focused on spurious or irrelevant artifacts, allowing for technical criticism of the
evidence presented. This ability to audit the algorithm's bias is essential to ensure the
impartiality of the justice system. Without explainability, the only way to refute it is to claim

that the model "simply erred," which is not a valid scientific critique.

Furthermore, XAl is crucial in assigning responsibility and in the ethics of Al. By justifying
classification, the XAl explanation can, in theory, help identify the type of artifact left by a
specific generator (GAN, Autoencoder, Diffusion), aiding in traceability and tracing the origin of
the manipulation. In a future where Al legislation will be more stringent, the ability of a deepfake
detection system to self-explain will be a normative requirement, not just a desirable feature.

7. Integration of XAl in Real-Time Deployment Environments

Although Explainable Artificial Intelligence (XAl) techniques are academically robust, their
integration into real - time deepfake detection environments (such as streaming platforms or
social networks) presents significant computational challenges.

Most of the more informative post-hoc explainability methods , such as SHAP and LIME, require
a high computational cost because they rely on evaluating multiple input perturbations or
running a large number of iterations to estimate the contribution of each feature. This additional
latency is often incompatible with the requirement to process tens or hundreds of frames per
second.

The challenge lies in finding an optimized trade-off between depth of explanation and speed
of inference. For real-time applications, intrinsically interpretable techniques and optimized
variations of CAMs become the most viable. The use of attention maps naturally generated by
Transformers (ViTs) can be explored as a...
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This provides a "nearly free" explanation in terms of latency. Since attention calculation is
inherent to Transformer inference, the attention matrix visualization can be extracted with
minimal additional computational cost, offering a spatially intuitive explanation without

significantly degrading the frame rate.

Another optimization strategy for large-scale deployment is Temporal Sampling
Explainability. Instead of generating an XAl map for each frame of the video, the system
can be configured to generate explanations only in keyframes (e.g., every 30 or 50 frames)
or only when the probability of falsity exceeds a certain uncertainty threshold. This
sampling reduces the overall computational cost and focuses explainability efforts on the
most critical moments of the manipulation. This allows for core detection.

(Binary classification) continues to run at high speed, while the auditability layer (XAl) is
selectively activated.

Future research in XAl for real-time deepfakes should focus on developing lightweight ,
approximate post-hoc models . This includes training smaller explanatory neural
networks that learn to predict the heat map of a larger black-box model (knowledge
distillation for XAl) or using optimized adversarial interrogation techniques to generate
explanations in constant time. Successful integration of XAl into high-speed environments
not only validates algorithmic decision-making for forensic purposes but also improves the
user and content moderator experience, allowing them to quickly understand the source
of manipulation and make informed decisions about removing or flagging the material.

8. CONCLUSION AND FUTURE IMPLICATIONS

This analysis confirmed that Explainable Artificial Intelligence (XAl) is the indispensable
link connecting the high accuracy of Deep Learning models for detecting deepfakes with the
stringent requirements of trust, transparency, and causal justification.

In the forensic and legal domains, simple predictive performance, inherent in black-box architectures like CNNs
and Transformers, is not sufficient for admissibility in a court of law, where evidence must be auditable and
refutable. XAl, through techniques such as Grad-CAM and SHAP, transforms opaque binary classification into a
detailed expert report, presenting visual and quantitative evidence about the specific regions and features that
motivated the falsity decision.

The main methodological insight lies in recognizing that XAl is not a mere accessory, but a
validation and diagnostic tool that addresses the biggest flaw in deepfake detection: the
poor generalization resulting from overfitting to spurious artifacts in the dataset. By auditing
the model with XAl at scale, developers can ensure that the algorithm is focusing on
authenticity invariants (physical coherence, lighting, geometry) instead of compression
artifacts or low-level metadata. Integrating intrinsic interpretability through the analysis of
Vision Transformers' (ViTs) self-attention maps represents the most promising path to
achieving transparency with
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Minimal computational overhead, balancing the need for high accuracy with the demand for traceability.

The future implications of this study are vast and outline a threefold research agenda. First, the
development of XAl-optimized hybrid models is a priority, focusing on creating post-hoc methods
that are rapidly computable and can be integrated into real-time detection pipelines without latency
degradation. Explainability knowledge distillation techniques — where a smaller, faster model learns
to mimic the explanations of a large black-box model — will be crucial for this purpose.

Secondly, research should focus on creating metrics for forensic interpretability. Currently,
interpretability is assessed subjectively or by generic metrics; for the forensic domain, it is vital to
create XAl confidence scales that quantify the degree of validity of the explanation, allowing the legal
system to have an objective standard for accepting or rejecting algorithmic evidence. This
standardization is fundamental for the future regulation of Al in security and justice contexts.

Finally, XAl should be expanded to the multimodal domain, offering coherent explanations that
integrate evidence of visual, auditory, and physiological manipulation. By justifying why audio does
not correspond to lip movement, or why the rPPG signal is inconsistent, the XAl explanation becomes
more robust and difficult to challenge. Transparency and interpretability are no longer luxuries; they
are the foundations upon which the next generation of defense against disinformation must be built,
ensuring that Artificial Intelligence is an ally of justice and not a source of opacity and distrust.
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