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RESUMO 

O cenário das deepfakes exige uma mudança de paradigma na detecção, movendo-se de 
modelos de Aprendizado Supervisionado (AS) que buscam artefatos conhecidos para sistemas 
baseados em Aprendizado Não Supervisionado (ANS), capazes de identificar anomalias e 
desvios estatísticos em relação à mídia autêntica. Este artigo propõe uma análise detalhada da 
integração de Visão Computacional Avançada e Técnicas de ANS para a criação de pipelines 
de Deepfake Forensics robustas. O foco reside no desenvolvimento de sistemas que não 
dependem de um conjunto de dados predefinido de deepfakes, tornando-os ideais para a 
detecção de manipulações de geração zero ou técnicas de forgery nunca vistas. Serão 
explorados o uso de Autoencoders e Redes Neurais Adversariais Generativas (GANs) em sua 
capacidade de modelar a distribuição da normalidade (vídeos reais) e o subsequente emprego 
de métricas de reconstrução e desvio de mapeamento latente para isolar os padrões anômalos 
que caracterizam a falsificação. A aplicação prática destas metodologias é vital para a 
segurança cibernética e para o controle de conteúdo em plataformas de mídia social, 
oferecendo um mecanismo de verificação de autenticidade que é resiliente à constante 
evolução das tecnologias de síntese de mídia. 

Palavras-chave: Deepfake Forensics; Aprendizado Não Supervisionado; Visão 
Computacional; Autoencoders; Detecção de Anomalias; Segurança Cibernética; Geração Zero. 

 

ABSTRACT 

The deepfake landscape demands a paradigm shift in detection, moving from Supervised 
Learning (SL) models that search for known artifacts to systems based on Unsupervised 
Learning (UL), capable of identifying anomalies and statistical deviations from authentic 
media. This paper provides a detailed analysis of integrating Advanced Computer Vision and 
UL Techniques to create robust Deepfake Forensics pipelines. The focus is on developing 
systems that do not depend on a predefined deepfake dataset, making them ideal for detecting 
zero-generationmanipulations or never-before-seen forgery techniques. We explore the use of 
Autoencoders and Generative Adversarial Networks (GANs) in their ability to model the 
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distribution of normality (real videos) and the subsequent application of reconstruction metrics 
and latent mapping deviation to isolate the anomalous patterns that characterize the forgery. 
The practical application of these methodologies is vital for cybersecurity and content 
moderation on social media platforms, offering an authenticity verification mechanism that 
is resilient to the constant evolution of synthetic media technologies. 

Keywords: Deepfake Forensics; Unsupervised Learning; Computer Vision; Autoencoders; 
Anomaly Detection; Cybersecurity; Zero-Generation. 

1. INTRODUÇÃO: A FRAGILIDADE DO APRENDIZADO SUPERVISIONADO EM 
FACE DA GERAÇÃO ZERO 

A primeira geração de detectores de deepfakes, baseada em Aprendizado Supervisionado 
(AS) e em arquiteturas como as Redes Neurais Convolucionais (CNNs), alcançou alto 
desempenho, mas revelou uma vulnerabilidade crítica: sua dependência de rótulos de dados 
(falso/real) para técnicas de manipulação conhecidas. Esses modelos são treinados para 
identificar os artefatos de fabricação específicos de um determinado gerador (e.g., FaceSwap, 
StyleGAN2). No entanto, a cada nova técnica de deepfake ou variação de pós-processamento, 
a acurácia dos modelos AS desmorona, um problema conhecido como falha na generalização 
cross-dataset. Essa fragilidade é insustentável em um cenário de Guerra Adversarial, onde 
novas técnicas de forgery (a geração zero de deepfakes) surgem continuamente. 

O desafio reside no fato de que o domínio dos vídeos autênticos (os dados "reais") é fixo e 
relativamente bem definido pelas leis da física e da biologia (coerência de iluminação, 
movimento, batimento cardíaco, etc.), enquanto o domínio dos deepfakes (os dados "falsos") é 
ilimitado e mutável. O Aprendizado Supervisionado falha porque tenta aprender as fronteiras 
entre um conjunto finito de falsificações conhecidas e o real, deixando o sistema cego para 
qualquer falsificação que não tenha sido vista durante o treinamento. Para sistemas de 
Deepfake Forensics que visam à segurança cibernética e à integridade da informação, essa 
dependência de conhecimento prévio é uma falha fatal. 

Este artigo propõe a exploração do Aprendizado Não Supervisionado (ANS) como a solução 
fundamental para mitigar a vulnerabilidade da geração zero. Ao invés de aprender o que é 
"falso", o ANS se concentra em modelar a distribuição da "normalidade" – ou seja, o que 
é inerentemente autêntico e estatisticamente coerente. Qualquer amostra de entrada que desvie 
significativamente dessa distribuição de normalidade (em termos de reconstrução, latência ou 
padrões estatísticos) é classificada como anomalia e, consequentemente, como um deepfake. 
Essa abordagem inverte o problema: a detecção não é mais uma busca por um artefato 
conhecido, mas a identificação de uma quebra na coerência estatística da realidade. 

A análise se concentrará na integração de técnicas avançadas de Visão Computacional para 
extrair features forenses relevantes, que são então processadas por algoritmos de ANS como 
Autoencoders (AEs) e variações de Redes Adversariais Generativas (GANs) treinadas para 
anomalias. O objetivo é demonstrar a viabilidade de construir pipelines de detecção que sejam 
inerentemente resilientes à evolução do deepfake, com aplicação imediata na verificação de 
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conteúdo em mídias sociais e na análise pericial de segurança cibernética, onde a velocidade 
e a robustez contra o desconhecido são críticas. 

 

2. AUTOENCODERS E A MODELAGEM DA DISTRIBUIÇÃO DA NORMALIDADE 

Os Autoencoders (AEs), uma classe proeminente de redes neurais em Aprendizado Não 
Supervisionado (ANS), são o pilar da detecção de anomalias em dados de Visão 
Computacional e representam uma ferramenta poderosa para a forense de deepfakes. O 
princípio de funcionamento do AE é simples e elegantemente adequado ao problema: ele é 
treinado exclusivamente em um vasto conjunto de dados de vídeos autênticos (amostras 
"normais") para aprender uma representação compacta (o código latente) desses dados e, 
em seguida, reconstruí-los com a maior fidelidade possível. O AE aprende, efetivamente, a 
distribuição estatística da normalidade. 

A arquitetura do AE é composta por um Encoder (que mapeia a imagem de entrada para um 
espaço latente de menor dimensão) e um Decoder (que reconstrói a imagem a partir desse 
código latente). Uma vez treinado em dados reais, o AE torna-se altamente eficiente na 
reconstrução de faces e cenas autênticas. No entanto, quando apresentado a um vídeo 
manipulado (deepfake), que contém padrões visuais e estatísticos que o AE nunca encontrou 
(os artefatos de forgery), a rede falha em mapear o deepfake com precisão para seu espaço 
latente e, consequentemente, falha na sua reconstrução. O modelo, ao tentar reconstruir o que 
não entende, gera uma imagem com alto erro de reconstrução. 

O Erro de Reconstrução (Reconstruction Error, geralmente medido por métricas como o 
Mean Squared Error - MSE) torna-se a métrica primária para a detecção de anomalias. Em 
amostras normais, o MSE é baixo; em deepfakes, o MSE é significativamente alto, pois o 
modelo não consegue codificar os artefatos de falsificação de forma eficiente. Esta diferença 
no erro de reconstrução serve como um discriminador não supervisionado. O limiar de 
anomalia é definido estatisticamente a partir da distribuição de erros de reconstrução dos dados 
de treinamento autênticos (os dados "normais") e qualquer erro que exceda este limiar é 
classificado como deepfake. 

A grande força do AE na Deepfake Forensics é sua robustez inerente contra a geração zero. 
Como ele não aprende o que é falso, mas sim o que é real, ele é capaz de detectar qualquer 
desvio estatístico da realidade, independentemente da técnica de manipulação utilizada (seja 
FaceSwap, Face Reenactment, ou modelos de Diffusion). A limitação do AE, no entanto, reside 
na sua suscetibilidade a deepfakes que são extremamente convincentes, ou seja, que se 
encaixam muito bem na distribuição de normalidade. O refinamento dessa técnica envolve o 
uso de Autoencoders Variacionais (VAEs) e a integração de módulos de atenção para focar 
a reconstrução nas áreas sensíveis da face, como textura da pele e reflexos oculares, onde os 
artefatos são mais propensos a se manifestar. 
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3. APRENDIZADO NÃO SUPERVISIONADO COM ARQUITETURAS 
ADVERSARIAIS (GAN-BASED ANOMALY DETECTION) 

Embora as Redes Adversariais Generativas (GANs) sejam a força motriz por trás da criação de 
deepfakes, elas também podem ser adaptadas de forma criativa no campo do Aprendizado 
Não Supervisionado (ANS) para a detecção de anomalias. Essa abordagem, denominada 
GAN-Based Anomaly Detection, explora a capacidade do Discriminador de uma GAN bem 
treinada em modelar o espaço de dados normais com alta precisão, tornando-se um detector 
de desvios estatísticos com uma sensibilidade superior em comparação com AEs tradicionais. 

O método mais comum envolve o treinamento de uma GAN em um conjunto de dados 
exclusivamente autêntico (o domínio de normalidade). O Gerador (G) aprende a produzir 
amostras realistas e o Discriminador (D) aprende a distinguir as imagens geradas (sintéticas) 
das imagens reais (autênticas). Para a detecção de deepfakes, o foco se volta para o 
Discriminador. No momento da inferência, um novo vídeo (que pode ser um deepfake) é 
introduzido. Se o Discriminador o classificar como "real" com alta certeza, o vídeo é 
considerado autêntico, pois se encaixa bem na distribuição que o Discriminador aprendeu como 
normal. Se, no entanto, o Discriminador o classificar como "falso" ou, de forma mais refinada, 
se ele o mapear para uma região do espaço latente com alta distância de mapeamento 
(mapping distance), a amostra é sinalizada como anômala. 

Uma variação poderosa é o AnoGAN (Anomaly Detection with GANs), que tenta mapear a 
imagem de entrada (o potencial deepfake) de volta para o espaço latente (z) do Gerador 
treinado. O princípio é que uma imagem autêntica, pertencente à distribuição de normalidade, 
deve ter um ponto correspondente z no espaço latente do Gerador que a reconstrói com alta 
fidelidade. Uma imagem anômala (o deepfake) não deve ter um z que a reconstrua bem. A 
pontuação de anomalia é, portanto, uma combinação do erro de reconstrução e da distância 
do mapeamento latente(a distância entre o z encontrado e o espaço latente de treinamento). 

Essa abordagem adversarial de ANS oferece duas vantagens cruciais: a sensibilidade e a 
robustez. A natureza adversária do treinamento de GAN força o modelo a aprender fronteiras 
de decisão mais nítidas e representações mais detalhadas da normalidade do que um AE 
simples, o que resulta em uma maior sensibilidade na detecção de desvios sutis. Além disso, 
assim como nos AEs, a detecção de anomalias baseada em GAN é intrinsicamente resistente 
à geração zero, pois o modelo não está procurando por deepfakes conhecidos, mas sim por 
qualquer amostra que viole a lei estatística da autenticidade que ele aprendeu, tornando-o 
extremamente valioso para a segurança cibernética em um contexto de evolução rápida das 
ameaças. 

 

4. INTEGRAÇÃO DE VISÃO COMPUTACIONAL: EXTRAÇÃO DE FEATURES 
FORENSES 

O sucesso do Aprendizado Não Supervisionado (ANS) na detecção de anomalias depende 
criticamente da qualidade das features extraídas dos vídeos pela Visão Computacional (VC). 



RCMOS – Revista Científica Multidisciplinar O Saber. 
ISSN: 2675-9128.  São Paulo-SP.

Este é um artigo publicado em acesso aberto (Open Access) sob a licença CreativeCommons Attribution, que permite uso, distribuição e 
reprodução em qualquer meio, sem restrições desde que o trabalho original seja corretamente citado.

5

A aplicação de técnicas de ANS em Deepfake Forensics não se limita a alimentar a rede com 
pixels brutos; é necessário pré-processar e isolar as áreas do vídeo onde os artefatos de 
manipulação são mais prováveis de ocorrer, garantindo que o ANS esteja modelando a 
normalidade das features forenses mais relevantes, e não ruídos ou contextos irrelevantes. 

O primeiro passo de VC envolve a Localização e Alinhamento Facial. Algoritmos como o 
MTCNN (Multi-task Cascaded Convolutional Networks) ou RetinaFace são utilizados para 
identificar e recortar a região facial com alta precisão. O alinhamento subsequente, baseado em 
pontos de referência (como olhos, nariz e boca), padroniza a pose da face, minimizando a 
variação não-manipulativa e permitindo que o modelo de ANS se concentre nas anomalias 
internas da face, como a textura da pele e a micro-expressão. 

Em seguida, a VC é empregada para isolar sinais temporais e fisiológicos críticos. Um dos 
deepfakes mais difíceis de falsificar é o sinal de Fotopletismografia Remota (rPPG), que é a 
variação de cor da pele causada pela pulsação sanguínea (o batimento cardíaco). Técnicas de 
VC podem ser usadas para extrair essa série temporal sutil de cor da face. Ao alimentar o AE 
ou a GAN com a série temporal do rPPG, em vez de apenas com o quadro estático, o ANS 
aprende a distribuição de normalidade das frequências cardíacas humanas. Qualquer quebra na 
coerência temporal ou uma frequência irrealista do rPPG será classificada como anomalia, 
independentemente do artefato visual do deepfake. 

Além disso, a VC é crucial na análise de domínio de frequência. Utilizando transformadas 
como a Discrete Cosine Transform (DCT) ou a Fourier Transform, é possível mapear o 
vídeo do domínio espacial para o domínio de frequência. Deepfakes, por serem produtos de 
interpolação e redes neurais, frequentemente apresentam anomalias estatísticas previsíveis 
em certas bandas de frequência que vídeos reais não possuem. O modelo de ANS é então 
treinado nas características estatísticas do domínio de frequência, tornando-o sensível a 
anomalias que são invisíveis no domínio do pixel, mas que são altamente reveladoras da 
manipulação. Esta integração de VC e ANS é o que confere ao Deepfake Forensics uma 
profundidade analítica que os detectores supervisionados de primeira geração não conseguem 
replicar. 

 

5. DESAFIOS E LIMITAÇÕES DO APRENDIZADO NÃO SUPERVISIONADO EM 
DEEPFAKE FORENSICS 

Apesar da promessa do Aprendizado Não Supervisionado (ANS) em superar a 
vulnerabilidade da geração zero, sua aplicação em Deepfake Forensics enfrenta desafios 
práticos e conceituais significativos que precisam ser endereçados para seu deployment em 
larga escala. O principal desafio é a definição rigorosa do limiar de anomalia. O limiar que 
separa um vídeo "normal" de uma "anomalia" (o deepfake) é tipicamente determinado 
estatisticamente a partir da distribuição do erro de reconstrução (em AEs) ou da distância de 
mapeamento (em GANs). No entanto, variações naturais em vídeos autênticos – como ruído 
da câmera, compressão, diferentes tons de pele e condições de iluminação – podem, por si só, 
gerar um erro de reconstrução elevado. 



RCMOS – Revista Científica Multidisciplinar O Saber. 
ISSN: 2675-9128.  São Paulo-SP.

Este é um artigo publicado em acesso aberto (Open Access) sob a licença CreativeCommons Attribution, que permite uso, distribuição e 
reprodução em qualquer meio, sem restrições desde que o trabalho original seja corretamente citado.

6

Essa sensibilidade a variações não-adversariais (ruído) e a variações naturais (diversidade 
de pose e ambiente) pode levar a uma alta taxa de falsos positivos (false positives). Um AE 
pode classificar um vídeo real, mas altamente comprimido (e, portanto, com muitos artefatos 
de compressão JPEG), como deepfake, simplesmente porque o ruído de compressão não 
pertence à distribuição de normalidade aprendida em dados de alta qualidade. Isso é um 
problema sério em plataformas de mídia social, onde a maioria dos vídeos é altamente 
comprimida. Para mitigar isso, o conjunto de dados de treinamento de "normalidade" precisa 
ser cuidadosamente diversificado para incluir todas as formas de degradação e variação 
ambiental esperadas no ambiente real. 

Outra limitação crítica é a dificuldade em identificar deepfakes de alta fidelidade. À medida 
que a tecnologia generativa (como os modelos de Diffusion e GANs avançadas) evolui, os 
deepfakes se tornam quase indistinguíveis de vídeos reais, encaixando-se perfeitamente na 
distribuição de normalidade dos dados autênticos. Um deepfake de altíssima qualidade 
resultará em um erro de reconstrução tão baixo quanto um vídeo real, tornando-o invisível para 
o detector de anomalias. Nesses casos, a detecção deve se basear em artefatos de domínio de 
frequência de ordem superior ou em sinais temporais (como o rPPG), que são mais difíceis 
de serem eliminados até mesmo pelos geradores mais sofisticados, exigindo uma integração de 
features mais complexa. 

Por fim, o ANS não fornece a explicabilidade que o Aprendizado Supervisionado com XAI 
pode oferecer. Embora ele diga "este vídeo é uma anomalia", ele não explica qual a natureza 
dessa anomalia. O AE pode ter um alto erro de reconstrução, mas o perito não sabe se a falha 
é no mapeamento do rPPG ou na textura do cabelo. Portanto, a próxima fronteira para o 
Deepfake Forensics é a integração do Aprendizado Não Supervisionado para a Detecção 
com o Aprendizado Supervisionado para a Explicação, combinando a robustez da detecção 
de anomalias com a capacidade de justificação visual e pericial. 

 

6. APLICAÇÃO PRÁTICA EM CIBERSEGURANÇA E MÍDIAS SOCIAIS 

A integração de Visão Computacional e Aprendizado Não Supervisionado (ANS) no 
Deepfake Forensics tem implicações transformadoras para a segurança cibernética e o 
controle de conteúdo em plataformas de mídia social, oferecendo soluções para desafios que 
os modelos supervisionados não conseguem resolver. O principal valor reside na capacidade 
de estabelecer um mecanismo de defesa pró-ativo e adaptativo contra a proliferação de 
mídias sintéticas. 

No contexto da segurança cibernética, a detecção de anomalias em tempo real é crucial para 
a verificação de autenticidade em comunicações sensíveis. Em um ataque de spear-phishing 
utilizando um deepfake de voz ou vídeo (como o CEO fraud), um sistema de ANS treinado na 
normalidade da voz ou da imagem do alvo pode sinalizar imediatamente o conteúdo como uma 
anomalia, mesmo que a técnica de falsificação seja nova. O AE, por ter aprendido a impressão 
digital biométrica da pessoa, consegue detectar o desvio estatístico do deepfake de geração 
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zero, funcionando como um filtro de autenticidade biométrica que é vital para a proteção de 
ativos e informações confidenciais. 

Para as plataformas de mídia social, o desafio é o volume massivo e a velocidade da 
disseminação de vídeos. O pipeline de ANS se torna uma camada de triagem de primeira 
linha de altíssima eficiência. Os Autoencoders e os modelos de Anomalia Baseados em GAN 
podem processar milhões de vídeos, identificando os candidatos a deepfakeque apresentam 
uma alta pontuação de anomalia. Isso é especialmente útil para lidar com a natureza volátil da 
deepfake generation, onde as técnicas mudam constantemente. Uma vez que o vídeo é 
sinalizado como anômalo pelo ANS, ele pode ser encaminhado para um sistema 
supervisionado secundário (com XAI) e uma revisão humana para confirmação pericial. 

O uso do ANS em mídias sociais não se limita à classificação binária. O modelo pode ser usado 
para quantificar o grau de anomalia (o erro de reconstrução), permitindo que a plataforma 
priorize a remoção ou sinalização dos deepfakes que mais se desviam da normalidade (os mais 
bizarros ou de pior qualidade, que causam maior confusão) ou os que representam a maior 
ameaça (os mais convincentes que se desviam por pouco, indicando um alto nível de forgery 
sofisticado). Ao modelar a normalidade de forma contínua, as plataformas podem desenvolver 
um sistema de vigilância adaptativa que é inerentemente mais resiliente e menos dependente 
de listas negras de técnicas de falsificação. 

 

7. INTEGRAÇÃO DE SINAIS TEMPORAIS E SPATIO-TEMPORAL 
AUTOENCODERS 

O Deepfake Forensics exige que os modelos de Aprendizado Não Supervisionado (ANS) 
olhem além do quadro estático, integrando a coerência temporal como um aspecto 
fundamental da normalidade. Vídeos reais mantêm uma consistência lógica no tempo que é 
notoriamente difícil para os geradores de deepfakes replicarem sem introduzir artefatos. A 
solução arquitetural para esse problema é o desenvolvimento de Autoencoders Espaço-
Temporais (Spatio-Temporal Autoencoders - STAEs). 

Os STAEs estendem a funcionalidade dos AEs tradicionais ao incorporar camadas que 
modelam a dimensão temporal. Isso geralmente é realizado com a substituição das camadas 
convolucionais 2D por camadas convolucionais 3D (que operam em espaços de volume de 
tempo x largura x altura) ou pela integração de redes recorrentes (LSTMs ou GRUs) ou 
módulos de atenção temporal após o estágio de codificação espacial. Ao serem treinados em 
vídeos reais, esses modelos aprendem a normalidade não apenas da aparência de um único 
quadro, mas também da dinâmica do movimento entre quadros, incluindo a coerência da 
iluminação em uma sequência, a velocidade do piscar de olhos, e a continuidade do fluxo 
óptico. 

A aplicação dos STAEs na detecção de anomalias é particularmente eficaz na identificação de 
artefatos de face swapping em vídeos. Tais manipulações frequentemente introduzem 
inconsistências na transição da máscara facialentre quadros, resultando em flickering ou 
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bordas instáveis que são difíceis de serem vistas a olho nu, mas que violam a normalidade do 
movimento suave e contínuo. O STAE, ao reconstruir o vídeo, gerará um alto erro de 
reconstrução nas áreas e nos momentos de transição incoerente, sinalizando a anomalia 
temporal. 

Além disso, a modelagem de sinais fisiológicos através da integração temporal é a chave para 
a robustez. O rPPG, o sinal do batimento cardíaco, é uma série temporal. Um STAE que é 
alimentado com a informação do rPPG ao longo do tempo aprenderá o padrão normal de 
variabilidade da frequência cardíaca humana. Uma manipulação que falhe em simular essa 
variabilidade ou que apresente uma frequência fixa ou estatisticamente irrealista (uma falha 
comum em deepfakes básicos) será imediatamente classificada como uma anomalia temporal 
e fisiológica, fornecendo uma evidência de falsidade que é quase impossível de ser replicada 
por técnicas de forgery atuais. A modelagem espaço-temporal é, portanto, o caminho mais 
robusto para garantir a resiliência do Deepfake Forensics contra a sofisticação crescente da 
manipulação de vídeo. 

 

8. CONCLUSÃO E IMPLICAÇÕES FUTURAS 

Este estudo demonstrou, com base em uma análise rigorosa e arquitetural, que a defesa contra 
a próxima geração de deepfakes exige um abandono estratégico do paradigma de 
Aprendizado Supervisionado (AS) em favor de abordagens robustas de Aprendizado Não 
Supervisionado (ANS), visando à mitigação da vulnerabilidade de geração zero. A 
dependência de rótulos de dados para deepfakes conhecidos revelou-se um ponto de falha 
insustentável em um ambiente de rápida e contínua evolução das tecnologias de síntese de 
mídia. A utilização de modelos como Autoencoders (AEs) e sistemas de Detecção de 
Anomalias Baseados em GAN estabelece uma metodologia inerentemente mais resiliente, 
pois seu foco está em modelar a distribuição estatística da normalidade – o que é autêntico 
e estatisticamente coerente – e classificar como anomalia qualquer desvio significativo, 
independentemente da técnica de forgery empregada. Esta inversão do problema, de buscar 
falhas conhecidas para rastrear quebras na coerência da realidade, é a fundação para sistemas 
de Deepfake Forensics verdadeiramente adaptativos. 

A eficácia do ANS é inseparável da integração eficiente da Visão Computacional (VC) como 
extratora de características forenses de alta relevância. O sucesso do pipeline não reside em 
alimentar o modelo com pixels brutos, mas sim em fornecer sinais isolados e difíceis de 
manipular, como a coerência temporal, as anomalias no domínio de frequência e os sinais 
fisiológicos (rPPG). Essa extração inteligente garante que o modelo de ANS esteja aprendendo 
a normalidade de invariantes físicas e biológicas, e não as variações cosméticas da aparência. 
O desenvolvimento de arquiteturas como os Autoencoders Espaço-Temporais (STAEs) 
representa o estado da arte dessa sinergia, permitindo a detecção de anomalias na dinâmica do 
movimento e na continuidade lógica de um vídeo, que são artefatos notoriamente difíceis de 
eliminar mesmo para os geradores mais sofisticados. A capacidade do STAE de identificar 
falhas no rPPG, por exemplo, oferece uma camada de autenticidade biométrica que é crucial. 
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Contudo, a transição para o ANS não está isenta de desafios, sendo a calibração do limiar de 
anomalia o mais crítico para a aplicação prática. A sensibilidade inerente dos modelos de ANS 
a variações não-adversariais (como ruído de câmera, diferentes codecs de compressão e 
variações ambientais) pode levar a uma taxa inaceitável de falsos positivos, o que 
comprometeria seriamente a credibilidade do sistema em plataformas de mídia social de alto 
volume. Portanto, a pesquisa futura deve se concentrar em métodos de treinamento e 
filtragem de dados de normalidade que sejam rigorosamente representativos do ambiente de 
deployment real, incluindo uma vasta gama de degradações de vídeo. A modelagem da 
normalidade deve ser robusta o suficiente para desconsiderar ruídos irrelevantes, mas sensível 
o suficiente para capturar desvios sutis introduzidos por deepfakes de alta fidelidade. 

Uma implicação futura fundamental deste trabalho é a necessidade imperativa de desenvolver 
sistemas de detecção híbridos e em camadas. O modelo ideal de Deepfake Forensics será 
uma arquitetura onde o ANS atue como a primeira linha de defesa e triagem, processando 
rapidamente milhões de vídeos e isolando aqueles que violam a normalidade estatística. Os 
candidatos a deepfake sinalizados por esse módulo de ANS devem ser, então, automaticamente 
encaminhados para um módulo secundário de Aprendizado Supervisionado (AS), que 
incorpora técnicas de Inteligência Artificial Explicável (XAI). Essa arquitetura em cascata 
combina a robustez da detecção de anomalias de geração zero com a capacidade de 
justificação pericial e rastreabilidade do XAI, superando as limitações isoladas de cada 
paradigma. 

A pesquisa deve também explorar o uso de Redes Adversariais Condicionais Não 
Supervisionadas que podem ser treinadas para modelar não apenas a distribuição de features 
normais, mas também para aprender a separação entre o mapeamento do espaço latente 
normal e o anômalo de forma mais eficiente do que os AEs tradicionais. O foco deve ser em 
refinar a pontuação de anomalia, evoluindo de uma simples métrica de erro de reconstrução 
(MSE) para uma métrica que incorpore a distância de manifold no espaço latente. Isso permite 
que a detecção seja mais discriminativa, distinguindo uma anomalia genuína (deepfake) de uma 
variação natural do objeto (outlier). 

Em termos de aplicação em segurança cibernética, o ANS tem um papel crucial na 
verificação de identidade biométrica adaptativa. Um sistema de ANS pode ser 
continuamente treinado na normalidade das características biométricas de um indivíduo (voz, 
face, rPPG) para detectar ataques de deepfake personalizados (como o spear-phishing 
executado com um deepfake do CEO). A robustez contra a geração zero garante que, mesmo 
que o atacante utilize uma técnica de síntese de voz ou face de última geração, a quebra na 
distribuição estatística dos padrões fisiológicos do alvo será detectada como anomalia, 
oferecendo uma camada de defesa que se adapta individualmente ao usuário. 

A quantificação do risco e do grau de anomalia em plataformas de mídia social é outra área 
de impacto futuro. Em vez de uma classificação binária, a saída do ANS – a pontuação de 
anomalia – pode ser usada para um escalonamento dinâmico de risco. Os vídeos com o maior 
desvio da normalidade poderiam ser sinalizados imediatamente para remoção ou revisão 
humana prioritária, enquanto vídeos com desvios marginais, mas que ainda se enquadram em 
certos critérios anômalos, poderiam ser sinalizados com um aviso de disclaimer. Essa 
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abordagem fornece às plataformas uma ferramenta de moderação de conteúdo baseada em 
evidências estatísticas e com uma granularidade de decisão superior. 

Em síntese, a evolução do Deepfake Forensics não é mais sobre alcançar 100% de acurácia em 
um conjunto de dados fixo; é sobre construir resiliência e adaptabilidade contra o 
desconhecido. O Aprendizado Não Supervisionadofornece a espinha dorsal dessa resiliência, 
permitindo que a ciência forense digital se concentre na modelagem e proteção da verdade 
estatística. A integração estratégica da Visão Computacional e do ANS é a única via 
sustentável para garantir que o sistema de defesa esteja sempre um passo à frente da curva de 
inovação do ataque, priorizando a capacidade de adaptação como a métrica de desempenho 
mais crítica para a segurança da informação no século XXI. 
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