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SUMMARY

The deepfake landscape demands a paradigm shift in detection, moving from Supervised Learning
(SL) models that search for known artifacts to Unsupervised Learning (USL) -based systems capable
of identifying anomalies and statistical deviations from authentic media. This article proposes a
detailed analysis of the integration of Advanced Computer Vision and USL techniques for the
creation of pipelines .

Robust Deepfake Forensics . The focus is on developing systems that do not rely on a predefined
dataset of deepfakes, making them ideal for detecting zero-generation manipulations or never-before-
seen forgery techniques . The use of Autoencoders and Generative Adversarial Neural Networks
(GANS) will be explored in their ability to model the normality distribution (real videos) and the
subsequent use of reconstruction metrics and latent mapping deviation to isolate the anomalous
patterns that characterize the falsification. The practical application of these methodologies is vital for
cybersecurity and content control on social media platforms, offering an authenticity verification
mechanism that is resilient to the constant evolution of media synthesis technologies.

Keywords: Deepfake Forensics; Unsupervised Learning; Computer Vision; Autoencoders; Anomaly
Detection; Cybersecurity; Generation Zero.

ABSTRACT

The deepfake landscape demands a paradigm shift in detection, moving from Supervised Learning
(SL) models that search for known artifacts to systems based on Unsupervised Learning (UL),
capable of identifying anomalies and statistical deviations from authentic media. This paper provides
a detailed analysis of integrating Advanced Computer Vision and UL Techniques to create robust
Deepfake Forensics pipelines. The focus is on developing systems that do not depend on a predefined
deepfake dataset, making them ideal for detecting zero-generation manipulations or never-before-
seen forgery techniques. We explore the use of Autoencoders and Generative Adversarial Networks
(GANS) in their ability to model the
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distribution of normality (real videos) and the subsequent application of reconstruction metrics
and latent mapping deviation to isolate the anomalous patterns that characterize the forgery.
The practical application of these methodologies is vital for cybersecurity and content
moderation on social media platforms, offering an authenticity verification mechanism that
is resilient to the constant evolution of synthetic media technologies.

Keywords: Deepfake Forensics; Unsupervised Learning; Computer Vision; Autoencoders;
Anomaly Detection; Cybersecurity; Zero-Generation.

1. INTRODUCTION: THE FRAGILITY OF SUPERVISED LEARNING IN THE FACE OF
GENERATION ZERO

The first generation of deepfake detectors , based on Supervised Learning (SL) and
architectures such as Convolutional Neural Networks (CNNSs), achieved high performance

but revealed a critical vulnerability: their reliance on data labels (fake/real) for known
manipulation techniques . These models are trained to identify the specific fabrication artifacts
of a given generator (e.g., FaceSwap, StyleGAN2). However, with each new deepfake
technique or post-processing variation, the accuracy of the SL models collapses, a problem
known as cross-dataset generalization failure. This weakness is unsustainable in an
adversarial warfare scenario , where new forgery techniques (the zero generation of
deepfakes) continually emerge.

The challenge lies in the fact that the domain of authentic videos (the "real” data) is fixed and
relatively well-defined by the laws of physics and biology (lighting coherence, movement,
heartbeat, etc.), while the domain of deepfakes (the "fake" data) is unlimited and mutable.
Supervised Learning fails because it attempts to learn the boundaries between a finite set of
known forgeries and the real thing, leaving the system blind to any forgery that was not seen
during training. For Deepfake Forensics systems aimed at cybersecurity and information
integrity, this reliance on prior knowledge is a fatal flaw.

This article proposes exploring Unsupervised Learning (USL) as the fundamental solution
to mitigate the vulnerability of generation zero. Instead of learning what is "fake,” USL focuses
on modeling the distribution of "normality" —that is, what is inherently authentic and
statistically consistent. Any input sample that deviates significantly from this normality
distribution (in terms of reconstruction, latency, or statistical patterns) is classified as an
anomaly and, consequently, as a deepfake.

This approach reverses the problem: detection is no longer a search for a known artifact, but
the identification of a break in the statistical coherence of reality.

The analysis will focus on integrating advanced Computer Vision techniques to extract
relevant forensic features , which are then processed by ANS algorithms such as Autoencoders
(AEs) and variations of Generative Adversarial Networks (GANSs) trained for anomalies. The
goal is to demonstrate the feasibility of building detection pipelines that are inherently

resilient to the evolution of deepfakes, with immediate application in verifying them.
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Content creation in social media and cybersecurity forensics , where speed and robustness against the unknown
are critical.

2. Autoencoders and the Modeling of the Normal Distribution

Autoencoders (AEs), a prominent class of neural networks in Unsupervised Learning

(ANS), are the mainstay of anomaly detection in Computer Vision data and represent a
powerful tool for deepfake forensics. The operating principle of AE is simple and elegantly
suited to the problem: it is trained exclusively on a vast dataset of authentic videos ("normal"
samples) to learn a compact representation (the latent code) of that data and then
reconstruct it with the highest possible fidelity. The AE effectively learns the statistical
distribution of normality.

The architecture of Advanced Experiments (AE) consists of an Encoder (which maps the
input image to a lower-dimensional latent space) and a Decoder (which reconstructs the
image from this latent code). Once trained on real data, AE becomes highly efficient at
reconstructing authentic faces and scenes. However, when presented with a manipulated
video (deepfake), which contains visual and statistical patterns that AE has never
encountered ( forgery artifacts), the network fails to accurately map the deepfake to its latent
space and, consequently, fails in its reconstruction. The model, in attempting to reconstruct
what it does not understand, generates an image with a high reconstruction error.

Reconstruction Error ( usually measured by metrics such as Mean Squared Error - MSE)
becomes the primary metric for anomaly detection. In normal samples, MSE is low; in
deepfakes, MSE is significantly high because the model cannot efficiently encode the forgery
artifacts. This difference in reconstruction error serves as an unsupervised discriminator.
The anomaly threshold is statistically defined from the distribution of reconstruction errors in
the authentic training data (the "normal" data), and any error exceeding this threshold is
classified as a deepfake.

The great strength of AE in Deepfake Forensics is its inherent robustness against zero-generation attacks.
Since it doesn't learn what is false, but rather what is real, it is able to detect any statistical
deviation from reality, regardless of the manipulation technique used (whether FaceSwap,

Face Reenactment, or Diffusion models ). The limitation of AE, however, lies in its susceptibility
to deepfakes that are extremely convincing, that is, that fit very well into the normal

distribution. Refining this technique involves the use of Variational Autoencoders (VAES)

and the integration of attention modules to focus the reconstruction on sensitive areas of the
face, such as skin texture and eye reflections, where artifacts are most likely to manifest.
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3. Unsupervised Learning with Adversarial Architectures (GAN-Based Anomaly Detection)

Although Generative Adversarial Networks (GANSs) are the driving force behind the creation of
deepfakes, they can also be creatively adapted in the field of Unsupervised Learning (ANS)
for anomaly detection. This approach, called GAN-Based Anomaly Detection, exploits the ability
of a well-trained GAN's Discriminator to model the normal data space with high accuracy,
becoming a statistical deviation detector with superior sensitivity compared to traditional AEs.

The most common method involves training a GAN on a uniquely authentic dataset (the
normality domain). The Generator (G) learns to produce realistic samples, and the Discriminator
(D) learns to distinguish the generated (synthetic) images from the real (authentic) images. For
deepfake detection, the focus shifts to the Discriminator. At the time of inference, a new video
(which may be a deepfake) is introduced. If the Discriminator classifies it as "real" with high
certainty, the video is considered authentic because it fits well within the distribution that the
Discriminator has learned to be normal. If, however, the Discriminator classifies it as "fake" or,
more precisely, if it maps it to a region of latent space with a high mapping distance , the
sample is flagged as anomalous.

A powerful variation is AnoGAN (Anomaly Detection with GANs), which attempts to map the
input image (the potential deepfake) back to the latent space (z) of the trained Generator. The
principle is that an authentic image, belonging to the normal distribution, should have a
corresponding z- point in the latent space of the Generator that reconstructs it with high fidelity.
An anomalous image (the deepfake) should not have a z-point that reconstructs it well. The
anomaly score is therefore a combination of the reconstruction error and the latent mapping
distance (the distance between the found z-point and the training latent space).

This adversarial approach to ANS offers two crucial advantages: sensitivity and robustness.
The adversarial nature of GAN training forces the model to learn sharper decision boundaries
and more detailed representations of normality than a simple AE, resulting in greater sensitivity
in detecting subtle deviations. Furthermore, just like AEs, GAN-based anomaly detection is
inherently resistant to zero-generation, as the model is not looking for known deepfakes , but
rather for any sample that violates the statistical law of authenticity it has learned, making it
extremely valuable for cybersecurity in a rapidly evolving context.

threats.

4. COMPUTER VISION INTEGRATION: FEATURE EXTRACTION
FORENSIC

The success of Unsupervised Learning (ANS) in anomaly detection critically depends on the
quality of the features extracted from the videos by Computer Vision (CV).
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The application of ANS techniques in Deepfake Forensics is not limited to feeding the network
with raw pixels; it is necessary to pre-process and isolate the areas of the video where
manipulation artifacts are most likely to occur, ensuring that the ANS is modeling the normality
of the most relevant forensic features , and not noise or irrelevant context.

The first step in VC involves Facial Localization and Alignment. Algorithms such as
MTCNN (Multi-task Cascaded Convolutional Networks) or RetinaFace are used to identify
and crop the facial region with high precision. Subsequent alignment, based on reference
points (such as eyes, nose, and mouth), standardizes the facial pose, minimizing non-
manipulative variation and allowing the ANS model to focus on internal facial anomalies,
such as skin texture and micro-expression.

Next, VC is employed to isolate critical temporal and physiological signals . One of the
most difficult deepfakes to fake is the Remote Photoplethysmography (rPPG) signal ,
which is the variation in skin color caused by blood pulsation (the heartbeat). VC techniques
can be used to extract this subtle temporal series of facial color. By feeding the AE or GAN
with the rPPG time series, instead of just the static frame, the ANS learns the normal
distribution of human heart rates. Any break in temporal coherence or an unrealistic rPPG
frequency will be classified as an anomaly, regardless of the visual artifact of the deepfake.

Furthermore, VC is crucial in frequency domain analysis. Using transforms such as the
Discrete Cosine Transform (DCT) or the Fourier Transform, it is possible to map the

video from the spatial domain to the frequency domain. Deepfakes, being products of
interpolation and neural networks, frequently exhibit predictable statistical anomalies.

in certain frequency bands that real videos do not possess. The ANS model is then trained

on the statistical characteristics of the frequency domain, making it sensitive to anomalies
that are invisible in the pixel domain but are highly revealing of manipulation. This integration
of VC and ANS is what gives Deepfake Forensics an analytical depth that first-generation
supervised detectors cannot replicate.

5. Challenges and Limitations of Unsupervised Learning in Deepfake Forensics

Despite the promise of Unsupervised Learning (ANS) in overcoming the vulnerability of
generation zero, its application in Deepfake Forensics faces significant practical and
conceptual challenges that need to be addressed for its large-scale deployment . The main
challenge is the rigorous definition of the anomaly threshold. The threshold that separates
a "normal" video from an "anomaly" (the deepfake) is typically determined statistically from
the reconstruction error distribution (in AEs) or the mapping distance (in GANs). However,
natural variations in authentic videos — such as camera noise, compression, different skin
tones, and lighting conditions — can, by themselves, generate a high reconstruction error.
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This sensitivity to non-adversarial variations (noise) and natural variations (pose and
environment diversity) can lead to a high rate of false positives . An Al might classify a real,
but highly compressed video (and therefore with many JPEG compression artifacts) as
deepfake simply because the compression noise does not belong to the normality distribution
learned from high-quality data. This is a serious problem on social media platforms, where
most videos are highly compressed. To mitigate this, the "normality" training dataset needs
to be carefully diversified to include all forms of degradation and environmental variation
expected in the real-world environment.

Another critical limitation is the difficulty in identifying high-fidelity deepfakes . As
generative technology (such as Diffusion models and advanced GANSs) evolves, deepfakes
become almost indistinguishable from real videos, fitting perfectly into the normality
distribution of authentic data. A very high-quality deepfake will result in a reconstruction error
as low as a real video, making it invisible to the anomaly detector. In these cases, detection
must rely on higher-order frequency domain artifacts or temporal signals (such as
rPPG), which are more difficult to eliminate even by the most sophisticated generators,
requiring more complex feature integration .

Finally, ANS does not provide the explainability that Supervised Learning with XAl can
offer. Although it says "this video is an anomaly," it does not explain the nature of that
anomaly. The AE may have a high reconstruction error, but the expert does not know if the
flaw is in the rPPG mapping or in the hair texture. Therefore, the next frontier for Deepfake
Forensics is the integration of Unsupervised Learning for Detection.

with Supervised Learning for Explanation, combining the robustness of anomaly detection
with the ability to provide visual and expert justification.

6. Practical Application in Cybersecurity and Social Media

The integration of Computer Vision and Unsupervised Learning (ANS) in Deepfake Forensics has transformative
implications for cybersecurity and content control on social media platforms, offering solutions to challenges that
supervised models cannot address. The main value lies in the ability to establish a proactive and adaptive

defense mechanism against the proliferation of synthetic media.

In the context of cybersecurity, real-time anomaly detection is crucial for verifying the
authenticity of sensitive communications. In a spear-phishing attack...

Using a deepfake voice or video (like the CEO fraud), an ANS system trained on the
normality of the target's voice or image can immediately flag the content as an anomaly,
even if the forgery technique is new. The AE, having learned the person's biometric
fingerprint , can detect the statistical deviation of the deepfake generation .
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Zero, functioning as a biometric authentication filter that is vital for the protection of assets and confidential

information.

For social media platforms, the challenge is the massive volume and speed of video dissemination. The ANS

pipeline becomes a highly efficient first-line screening layer . Autoencoders and GAN-based Anomaly Models.

They can process millions of videos, identifying deepfake candidates that exhibit a high anomaly score. This is
especially useful for dealing with the volatile nature of deepfake generation, where techniques are constantly
changing. Once a video is flagged as anomalous by the ANS, it can be forwarded to a secondary supervised

system (with XAl) and human review for expert confirmation.

The use of ANS in social media is not limited to binary classification. The model can be used to quantify the
degree of anomaly (the reconstruction error), allowing the platform to prioritize the removal or flagging of deepfakes
that deviate most from normality (the most bizarre or lowest quality, causing the most confusion) or those that pose

the greatest threat (the most convincing ones that deviate only slightly, indicating a high level of forgery) .

(sophisticated). By continuously modeling normality, platforms can develop an adaptive surveillance system that

is inherently more resilient and less dependent on blacklists of spoofing techniques.

7. INTEGRATION OF TEMPORAL SIGNALS AND SPATIO-TEMPORAL AUTOENCODERS

Deepfake Forensics requires Unsupervised Learning (ANS) models .

Look beyond the static frame, integrating temporal coherence as a fundamental aspect of normality. Real videos
maintain a logical consistency over time that is notoriously difficult for deepfake generators to replicate without
introducing artifacts. The architectural solution to this problem is the development of Spatio-Temporal
Autoencoders (STAES).

STAEs extend the functionality of traditional AEs by incorporating layers that model the temporal dimension. This
is usually achieved by replacing 2D convolutional layers with 3D convolutional layers (which operate in time x
width x height volume spaces ) or by integrating recurrent networks (LSTMs or GRUSs) or temporal attention
modules after the spatial encoding stage. When trained on real videos, these models learn the normality not only
of the appearance of a single frame, but also of the dynamics of movement between frames, including the

coherence of lighting in a sequence, the speed of blinking, and the continuity of optical flow.

The application of STAEs in anomaly detection is particularly effective in identifying face-swapping artifacts in
videos. Such manipulations frequently introduce inconsistencies in the transition of the facial mask between

frames, resulting in flickering or
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Unstable edges that are difficult to see with the naked eye, but which violate the normality of
smooth and continuous movement. STAE, when reconstructing the video, will generate a
high reconstruction error in the areas and moments of incoherent transition, signaling
the temporal anomaly.

Furthermore, modeling physiological signals through temporal integration is key to
robustness. rPPG, the heart rate signal, is a time series. A STAE fed rPPG information over
time will learn the normal pattern of human heart rate variability. A manipulation that fails to
simulate this variability or that presents a fixed or statistically unrealistic frequency (a common
flaw in basic deepfakes ) will be immediately classified as a temporal and physiological
anomaly, providing evidence of falsity that is nearly impossible to replicate using current
forgery techniques . Spatiotemporal modeling is therefore the most robust way to ensure the
resilience of Deepfake Forensics against the increasing sophistication of video manipulation.

8. CONCLUSION AND FUTURE IMPLICATIONS

This study demonstrated, based on a rigorous architectural analysis, that defending against
the next generation of deepfakes requires a strategic abandonment of the Supervised
Learning (SL) paradigm in favor of robust Unsupervised Learning (USL) approaches,
aiming to mitigate zero-generation vulnerability. The reliance on data labels for known
deepfakes has proven to be an unsustainable point of failure in an environment of rapidly
evolving media synthesis technologies. The use of models such as Autoencoders (AEs) and
GAN-based Anomaly Detection systems establishes an inherently more resilient
methodology, as its focus is on modeling the statistical distribution of normality — what is
authentic and statistically consistent — and classifying any significant deviation as an anomaly,
regardless of the forgery technique employed. This inversion of the problem, from searching
for known flaws to tracking breaks in the coherence of reality, is the foundation for truly
adaptive Deepfake Forensics systems .

The effectiveness of ANS is inseparable from the efficient integration of Computer Vision
(CV) as an extractor of highly relevant forensic features . The success of the pipeline does
not lie in feeding the model with raw pixels, but rather in providing isolated and difficult-to-
manipulate signals, such as temporal coherence, frequency domain anomalies , and
physiological signals (rPPG). This intelligent extraction ensures that the ANS model is
learning the normality of physical and biological invariants, and not the cosmetic variations of appearance
The development of architectures such as Spatiotemporal Autoencoders (STAES)

This represents the state of the art in this synergy, allowing the detection of anomalies in the
dynamics of movement and the logical continuity of a video, which are notoriously difficult
artifacts to eliminate even for the most sophisticated generators. STAE's ability to identify
flaws in rPPG, for example, offers a crucial layer of biometric authenticity.
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However, the transition to ANS is not without challenges, with anomaly threshold
calibration being the most critical for practical application. The inherent sensitivity of ANS
models to non-adversarial variations (such as camera noise, different compression

codecs , and environmental variations) can lead to an unacceptable rate of false positives,
which would seriously compromise the system's credibility on high-volume social media
platforms. Therefore, future research should focus on normality data training and
filtering methods that are rigorously representative of the real-world deployment
environment , including a wide range of video degradations. Normality modeling must be
robust enough to disregard irrelevant noise, yet sensitive enough to capture subtle
deviations introduced by high-fidelity deepfakes .

A key future implication of this work is the imperative need to develop hybrid, layered
detection systems. The ideal Deepfake Forensics model will be an architecture where
the ANS acts as the first line of defense and triage, rapidly processing millions of
videos and isolating those that violate statistical normality. Deepfake candidates flagged
by this ANS module should then be automatically routed to a secondary Supervised
Learning (SL) module, which incorporates Explainable Artificial Intelligence (XAl)
techniques . This cascading architecture

It combines the robustness of zero-generation anomaly detection with the expert
justification and traceability capabilities of XAl, overcoming the isolated limitations of
each paradigm.

The research should also explore the use of Unsupervised Conditional Adversarial
Networks that can be trained to model not only the distribution of features.

The goal is not only to learn how to distinguish between normal and anomalous latent
space mapping more efficiently than traditional AEs. The focus should be on refining the
anomaly score, evolving from a simple reconstruction error metric (MSE) to one that
incorporates the manifold distance in latent space. This allows for more discriminative
detection, distinguishing a genuine anomaly (deepfake) from a natural variation of the
object (outlier).

In terms of cybersecurity applications, ANS plays a crucial role in adaptive biometric
identity verification. An ANS system can be continuously trained on the normality of an
individual's biometric characteristics (voice, face, rPPG) to detect customized deepfake
attacks (such as spear-phishing).

(executed with a deepfake of the CEO). Robustness against zero-generation attacks
ensures that even if the attacker uses a state-of-the-art voice or face synthesis technique,
the break in the statistical distribution of the target's physiological patterns will be detected
as an anomaly, offering a layer of defense that adapts individually to the user.

Quantifying risk and the degree of anomaly on social media platforms is another area of
future impact. Instead of a binary classification, the ANS output — the anomaly score —
could be used for dynamic risk scaling. Videos with the greatest deviation from normality
could be immediately flagged for removal or priority human review, while videos with
marginal deviations, but which still meet certain anomalous criteria, could be flagged with
a disclaimer . This
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This approach provides platforms with a content moderation tool based on statistical evidence
and with greater decision-making granularity.

In short, the evolution of Deepfake Forensics is no longer about achieving 100% accuracy on a fixed
dataset; it's about building resilience and adaptability against the unknown. Unsupervised Learning
provides the backbone of this resilience, allowing digital forensics science to focus on modeling and
protecting statistical truth. The strategic integration of Computer Vision and ANS is the only
sustainable way to ensure that the defense system is always one step ahead of the attack innovation
curve, prioritizing adaptability as the most critical performance metric for information security in the
21st century.
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