SCIENTIOMETRIC REVIEW OF SCALING FACTORS FOR DEPTH AND FLUENCY OF DOSIMETRIC PHANTOMS MADE OF PLASTIC MATERIALS

Scientiometric review of scaling factors for depth and fluency of dosimetric phantoms made of plastic materials

Authors

  • Pedro Iwai Hospital UOPECCAN Author
  • Rodrigo G. Bueno Universidade Estadual de Maringá Author
  • Dr. Otavio Akira Sakai Instituto Federal do Paraná Author

DOI:

https://doi.org/10.51473/rcmos.v1i2.2025.1214

Keywords:

Radiotherapy, Phantom, Scaling Factors, Dosimetry, Electrons

Abstract

This article presents a scientometric analysis of the scaling factors for depth (cpl) and fluence (hpl) in thermoplastic materials used in dosimetric phantoms, based on data from Scopus, Web of Science, and Science Direct (2015–2025). Out of the 89 identified articles, 6 were selected. An increase in publications was observed during the periods 2015–2017, 2018–2020 e 2021–2023. Iran led with 50% of the studies, followed by Brazil, South Korea, and Greece (16.67% each). The most cited material was RW3 (polystyrene with 2.1% ± 0.2% TiO₂, also know as Goettingen White Water), appearing in 50% of the articles. Polymethyl methacrylate (PMMA), SP34 (white polystyrene (C₈H₈) with a small percentage of titanium dioxide (TiO₂)), Lucite (a brand name for the synthetic plastic polymethyl methacrylate), and PLA (polylactic acid) were each addressed in 16.67% of the studies. The densities were as follows: PLA (1.240 g/cm³), PMMA (1.130 g/cm³), Lucite (1.190 g/cm³), RW3 and SP34 (1.045 g/cm³). The electron density was 3.940 and 1.01 (el/cm³ × 10²³) for PLA and SP34, respectively. The Hounsfield Unit (HU) value for PLA was 180±30. All studies were experimental, with one employing Monte Carlo (MC) simulation for validation. The scaling values for cpl and hpl were: PLA (0.946/1.050), PMMA (0.960/0.954), Lucite (0.941), RW3 (0.930/1.001), and SP34 (0.923/1.019). The scientometric analysis helps identify trends and impacts, optimizing resources in oncological research and promoting the development of more effective and accessible techniques for treating superficial tumors and relative dosimetry.

Downloads

Download data is not yet available.

Author Biographies

  • Pedro Iwai, Hospital UOPECCAN

    Bacharel em Física pela Universidade de São Paulo (USP), 2008. Concluiu a residencia em Física Medica da Radioterapia no AC Camargo Cancer Center em 2016. É Supervisor de Proteção Radiológica (CNEN FT-0491) e reconhecido como Físico Medico especialista em radioterapia pela Associação Brasileira de Física Medica (ABFM RT-564-1794). Atualmente trabalha como Físico Médico no Hospital Uopeccan de Umuarama/PR, fez parte do TG100 Working Group da American Association of Physicists in Medicine, é membro da Comissão Científica do Congresso Brasileiro de Física Médica 2021 e é integrante do Comitê de Ética em Pesquisa Envolvendo Seres Humanos da Universidade UNIPAR e da Comissão de Análise de Projetos de Pesquisa do Hospital UOPECCAN, ambos de Umuarama/PR. Seus interesses de pesquisa estão intimamente ligados à resolução de problemas clínicos em física médica da radioterapia e aplicações de física das radiações no ambiente hospitalar.

    https://orcid.org/0000-0002-1473-3833

  • Rodrigo G. Bueno, Universidade Estadual de Maringá

    Graduando em Física Médica pela Universidade Estadual de Maringá (UEM) Campus Regional de Goioerê (CRG). Foi bolsista do Programa Institucional de Bolsas de Iniciação Científica (PIBIC), financiado pelo CNPq, entre 2022 e 2023, e do Programa Institucional de Bolsas de Iniciação em Desenvolvimento Tecnológico e Inovação (PIBITI), com apoio da Fundação Araucária, entre 2023 e 2024. Em ambos, realizou análises de materiais utilizando técnicas de DRX e FTIR. Participou de projetos de extensão, como o Projeto Integrado DCI: Físicos Educadores e Físicos Médicos em Prol da Sociedade e Escola na UEM, onde organizou palestras e experimentos em laboratório sobre física médica e astronomia, além de promover observações astronômicas. Desenvolveu pesquisas sobre a influência do tamanho de partículas de Bi2O3, Gd2O3 e Pb2O3 na atenuação de radiação e sobre resina epóxi dopada com halogenetos como alternativa ao uso de bário e chumbo em materiais atenuadores de radiação. Também trabalhou no desenvolvimento de um dosímetro Fricke modificado, projetado para sensibilização em baixas doses, visando seu uso didático no ensino de radiação. Atualmente, em 2024, está envolvido em um projeto de pesquisa em colaboração com o físico médico Pedro Iwai (UOPECCAN de Umuarama), elaborando vídeos e materiais didáticos com o objetivo de reduzir a ansiedade de pacientes durante o tratamento de radioterapia.

  • Dr. Otavio Akira Sakai, Instituto Federal do Paraná

    Possui graduação em Fisica pela Universidade Estadual de Maringá (2001), Mestrado em Física pela Universidade Estadual de Maringá (2004) e doutorado em Física pela Universidade Estadual de Maringá (2008). Atualmente é professor do Instituto Federal do Paraná - Campus Umuarama. Tem experiência na área de Física e Química de Materiais, com ênfase em Prop. Óticas e Espectrosc. da Mat. Condens; Outras Inter. da Mat. com Rad. e Part., atuando principalmente nos seguintes temas: Nanotecnologia, Nanociências, Nanopartículas, Nanoemsulsões, Produtos naturais.

    https://orcid.org/0000-0002-3502-5107

References

INTERNATIONAL ATOMIC ENERGY AGENCY. Absorbed Dose Determination in External Beam Radiotherapy, Technical Reports Series No. 398 (Rev. 1). 2024.

DIAMANTOPOULOS, Stefanos et al. Theoretical and experimental determination of scaling factors in electron dosimetry for 3D‐printed polylactic acid. Medical physics, v. 45, n. 4, p. 1708-1714, 2018. DOI: https://doi.org/10.1002/mp.12790

ROONEY, Michael K. et al. Three‐dimensional printing in radiation oncology: a systematic review of the literature. Journal of applied clinical medical physics, v. 21, n. 8, p. 15-26, 2020. DOI: https://doi.org/10.1002/acm2.12907

HUQ, M. Saiful; YUE, N.; SUNTHARALINGAM, N. Experimental determination of depth‐scaling factors and central axis depth dose for clinical electron beams. International journal of cancer, v. 96, n. 4, p. 232-237, 2001. DOI: https://doi.org/10.1002/ijc.1025

PARTY, IPEM Working et al. The IPEM code of practice for electron dosimetry for radiotherapy beams of initial energy from 4 to 25 MeV based on an absorbed dose to water calibration. Physics in Medicine & Biology, v. 48, n. 18, p. 2929, 2003. DOI: https://doi.org/10.1088/0031-9155/48/18/301

PARK, So-Yeon et al. A patient-specific polylactic acid bolus made by a 3D printer for breast cancer radiation therapy. PloS one, v. 11, n. 12, p. e0168063, 2016. DOI: https://doi.org/10.1371/journal.pone.0168063

BURLESON, Sarah et al. Use of 3D printers to create a patient‐specific 3D bolus for external beam therapy. Journal of applied clinical medical physics, v. 16, n. 3, p. 166-178, 2015. DOI: https://doi.org/10.1120/jacmp.v16i3.5247

SU, Shiqin; MORAN, Kathryn; ROBAR, James L. Design and production of 3D printed bolus for electron radiation therapy. Journal of applied clinical medical physics, v. 15, n. 4, p. 194-211, 2014. DOI: https://doi.org/10.1120/jacmp.v15i4.4831

AVILES, JE Alpuche et al. On the physical and dosimetric properties of 3-dimensional printed electron bolus fabricated using polylactic acid. International Journal of Radiation Oncology, Biology, Physics, v. 96, n. 2, p. E622-E623, 2016. DOI: https://doi.org/10.1016/j.ijrobp.2016.06.2188

CUNHA, J. Adam M. et al. Evaluation of PC‐ISO for customized, 3D printed, gynecologic HDR brachytherapy applicators. Journal of applied clinical medical physics, v. 16, n. 1, p. 246-253, 2015. DOI: https://doi.org/10.1120/jacmp.v16i1.5168

DIAMANTOPOULOS, Stefanos; ZAVERDINOS, Panagiotis. Development of a three dimensional printed MRI compatible template for high dose rate prostate brachytherapy implants. Physica Medica, v. 32, p. 208-209, 2016. DOI: https://doi.org/10.1016/j.ejmp.2016.07.705

VENEZIANI, Glauco Rogério et al. Attenuation coefficient determination of printed ABS and PLA samples in diagnostic radiology standard beams. In: Journal of Physics: Conference Series. IOP Publishing, 2016. p. 012088. DOI: https://doi.org/10.1088/1742-6596/733/1/012088

PEREIRA, Dirceu Dias et al. Validation of polylactic acid polymer as soft tissue substitutive in radiotherapy. Radiation Physics and Chemistry, v. 189, p. 109726, 2021. DOI: https://doi.org/10.1016/j.radphyschem.2021.109726

IVANCHEVA, Ludmila. Scientometrics today: A methodological overview. Collnet journal of scientometrics and information management, v. 2, n. 2, p. 47-56, 2008. DOI: https://doi.org/10.1080/09737766.2008.10700853

PIOVESAN, Armando; TEMPORINI, Edméa Rita. Pesquisa exploratória: procedimento metodológico para o estudo de fatores humanos no campo da saúde pública. Revista de saúde pública, v. 29, p. 318-325, 1995. DOI: https://doi.org/10.1590/S0034-89101995000400010

ANDREO, Pedro. Monte Carlo simulations in radiotherapy dosimetry. Radiation Oncology, v. 13, n. 1, p. 121, 2018. DOI: https://doi.org/10.1186/s13014-018-1065-3

CARELLI, Maria José Guimarães; SANTOS, Acácia Aparecida Angeli dos. Temporaly and personal conditions of study of university students. Psicologia Escolar e Educacional, v. 2, n. 3, p. 265-278, 1998. DOI: https://doi.org/10.1590/S1413-85571998000300006

PAUL, Jean-Jacques; RIBEIRO, Zoya Dias. As condiçoes de vida e de trabalho dos alunos do ensino superor brasileiro: o caso das universidades de Fortaleza. Educação Brasileira, v. 13, n. 26, p. 71-127, 1991.

MCEWEN, M. R.; DUSAUTOY, A. R. Characterization of the water-equivalent material WTe for use in electron beam dosimetry. Physics in Medicine & Biology, v. 48, n. 13, p. 1885, 2003. DOI: https://doi.org/10.1088/0031-9155/48/13/302

ŞAHMARAN, TURAN; KAŞKAŞ, A. Comparisons of various water-equivalent materials with water phantom using the Geant4/GATE simulation program. International Journal of Radiation Research, v. 20, n. 3, p. 709-714, 2022.

SRINIVASAN, K. et al. Studies on the tissue and water equivalence of some 3D printing materials and dosimeters. Radiation Physics and Chemistry, v. 198, p. 110259, 2022. DOI: https://doi.org/10.1016/j.radphyschem.2022.110259

DAVARPANAH, Mohammad Reza. Scientometric analysis of nuclear science and technology research output in Iran. journal of Scholarly Publishing, v. 43, n. 4, p. 421-439, 2012. DOI: https://doi.org/10.1353/scp.2012.0016

BARROS, L. de O.; SILVA, M. G. C. da. Plano de Desenvolvimento da Radioterapia para a próxima década (RT-2030) Resenha. Revista Brasileira de Cancerologia, [S. l.], v. 70, n. 4, p. e–274889, 2024. DOI: 10.32635/2176-9745.RBC.2024v70n4.4889. Disponível em: https://rbc.inca.gov.br/index.php/revista/article/view/4889. Acesso em: 16 jun. 2025. DOI: https://doi.org/10.32635/2176-9745.RBC.2024v70n4.4889

SOUZA, APS et al. Simulating Araponga. Brazilian Journal of Radiation Sciences, 2022.

GUAL, M. R. et al. A SWOT analysis of a Floating Nuclear Power Plant for electricity generation in Brazil. Brazilian Journal of Radiation Sciences, v. 11, n. 4, p. 1-17, 2023. DOI: https://doi.org/10.15392/2319-0612.2023.2313

OKUNO, Emico; YOSHIMURA, Elisabeth Mateus. Física das radiações. Oficina de textos, 2016.

KIM, Kyo-Tae et al. Evaluation of the water-equivalent characteristics of the SP34 plastic phantom for film dosimetry in a clinical linear accelerator. Plos one, v. 18, n. 10, p. e0293191, 2023. DOI: https://doi.org/10.1371/journal.pone.0293191

NAKAO, Minoru et al. Tolerance levels of CT number to electron density table for photon beam in radiotherapy treatment planning system. Journal of Applied Clinical Medical Physics, v. 19, n. 1, p. 271-275, 2018. DOI: https://doi.org/10.1002/acm2.12226

DIAZ-MERCHAN, J. A. et al. Bolus 3D printing for radiotherapy with conventional PLA, ABS and TPU filaments: theoretical-experimental study. Applied Radiation and Isotopes, v. 199, p. 110908, 2023. DOI: https://doi.org/10.1016/j.apradiso.2023.110908

MONTGOMERY, Richard Murdoch. From Old Regime Portugal to Contemporary Brazil: Patrimonial Legacies, Aristocratic Mentalities, and the Delayed Pursuit of Scientific Advancement. 2024. DOI: https://doi.org/10.20944/preprints202412.1817.v1

CABRAL FILHO, José Eulálio. Is Brazilian scientific publication at a crossroad?. Revista Brasileira de Saúde Materno Infantil, v. 17, n. 3, p. 421-422, 2017. DOI: https://doi.org/10.1590/1806-93042017000300001

BARRETO, Mauricio L. Scientific research and graduate studies at the crossroads in Brazil. Cadernos de Saúde Pública, v. 30, p. 1600-1602, 2014. DOI: https://doi.org/10.1590/0102-311XCO030814

DE CASTRO MOREIRA, Ildeu. Brazilian science at a crossroads. Science, v. 301, n. 5630, p. 141-141, 2003. DOI: https://doi.org/10.1126/science.301.5630.141

Published

2025-08-05

How to Cite

BERCHIOL IWAI, Pedro Vitor; BUENO, Rodrigo Gabriel; SAKAI, Otavio Akira. SCIENTIOMETRIC REVIEW OF SCALING FACTORS FOR DEPTH AND FLUENCY OF DOSIMETRIC PHANTOMS MADE OF PLASTIC MATERIALS: Scientiometric review of scaling factors for depth and fluency of dosimetric phantoms made of plastic materials. Multidisciplinary Scientific Journal The Knowledge, Brasil, v. 1, n. 2, 2025. DOI: 10.51473/rcmos.v1i2.2025.1214. Disponível em: https://submissoesrevistarcmos.com.br/rcmos/article/view/1214. Acesso em: 5 sep. 2025.