Nanocellulose: a brief review from production to regulation

Nanocellulose: a brief review from production to regulation

Authors

  • Renato Augusto Pereira Damásio Author
  • Bárbara Luísa Corradi Pereira Author
  • Fernando Jose Borges Gomes Author
  • Rubens Chaves de Oliveira Author
  • Jorge Luiz Colodette Author

DOI:

https://doi.org/10.51473/rcmos.v1i2.2025.1296

Keywords:

Wood, celulose, nanocelulose, regulation.

Abstract

Extraction of nanocrystalline cellulose (CNC) and nanofibrillar cellulose (CNF) and its applications in materials have attracted the attention of researchers and industries. This nanomaterial present high resistance and rigidity, combined with the fact of low weight and availability in the environment and sustainability. Nanocelluloses can be produced by various extraction methods that involve chemical, mechanical and enzymatic production processes. These processes can be used combined or not to obtain a final product with unique characteristics. New materials, such as CNF and CNC, will bring great benefits to the improvement and discovery new ways of producing bioingredients that allow the modification of various properties in a matrix, whether polymeric or not. In this way, contributing to the construction of new materials as well as their sustainability.

Downloads

Download data is not yet available.

Author Biographies

  • Renato Augusto Pereira Damásio

    1PhD Student, Department of Chemical Engineering, SUNY College of Environmental Science and Forestry, Syracuse, United States - http://lattes.cnpq.br/9704098989769768 - https://orcid.org/0000-0001-7268-2774

  • Bárbara Luísa Corradi Pereira

    Universidade Federal de Mato Grosso, Cuiabá, Mato Grosso, Brasil

  • Fernando Jose Borges Gomes

    Universidade Federal Rural do Rio de Janeiro, Seropedica, Rio de Janeiro, Brasil

  • Rubens Chaves de Oliveira

    Professor Emérito na Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brasil

  • Jorge Luiz Colodette

    Professor Emérito na Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brasil

References

ABE, K.; IWAMOTO, S.; YANO, H. Obtaining Cellulose Nanofibers with a Uniform Width of 15 nm from Wood. Biomacromolecules, v. 8, n. 10, p. 3276-3278, 2007.

ABE, K.; YANO, H. Comparison of the characteristics of cellulose microfibril aggregates isolated from fiber and parenchyma cells of Moso bamboo (Phyllostachys pubescens). Cellu-lose, v. 17, p. 271-277, 2010.

ANDRESEN, M.; JOHANSSON, L-S.; TANEM, B. S.; STENIUS, P. Properties and charac-terization of hydrophobized microfibrillated cellulose. Cellulose, v. 13, p. 665–677, 2006.

ARAKI, J.; WADA, M.; KUGA, S.; OKANO, T. Flow properties of microcrystalline cellu-lose suspension prepared by acid treatment of native cellulose. Colloids and Surfaces A, v. 142, p. 75-82, 1998.

BALZER, P. L.; VICENTE, L. L.; BRIESEMEISTER, R.; BECKER, D.; SOLDI, V.; JÚ-NIOR, A. R.; FELTRAN, M. B. Estudo das propriedades mecânicas de um composto de pvc modificado com fibras de bananeira. Polímeros: Ciência e Tecnologia, vol. 17, nº 1, p. 1-4, 2007.

CARRASCO, G. C. Cellulose fibres, nanofibrils and microfibrils: The morphological sequence of MFC components from a plant physiology and fibre technology point of view. Nanoscale Research Letter, v. 6, n. 1, p. 417, 2011.

CAO, X., DING, B., YU, J., AL-DEYAB, S. S., Cellulose nanowhiskers extracted from TEMPO-oxidized jute fibers, Carbohydrate Polymers, 2010.

CHERIAN, B.M., POTHAN, L. A., NGUYEN-CHUNG, T., MENNIG, G., KOTTAISAMY, M., THOMAS, S. A Novel Method for the Synthesis of Cellulose Nano-fibril Whiskers from Banana Fibers and Characterization. J. Agric. Food Chem, v. 56, nº 14, 2008.

DÉJARDIN, A.; LAURANS, F.; ARNAUD, D.; BRETON, C.; PILATE, G.; LEPLE, G. J. Wood formation in Angiosperms. Comptes Rendus Biologies, v. 333, p. 325-334, 2010.

DUFRESNE, A. Polysaccharide nano crystal reinforced nanocomposites. Canadian Jour-nal of Chemistry, v. 86, p. 484–494, 2008.

DUFRESNE, A., DUPEYRE, D., VIGNON, M.R. Cellulose Microfibrils from Potato Tuber Cells: Processing and Characterization of Starch–Cellulose Microfibril Composites. Journal of Applied Polymer Science, v. 76, p. 2080-2092, 2000.

ELAZZOUZI-HAFRAOUI, S.; NISHIYAMA, Y.; PUTAUX, J. L. The shape and size dis-tribution of crystalline nanoparticles prepared by acid hydrolysis of native cellulose. Biom-acromolecules, v. 9, p. 57– 65, 2008.

EICHHORN, S. J.; DUFRESNE, A.; ARANGUREN, M.; MARCOVICH, N. E.; CA-PADONA, J. R.; ROWAN, S. J.; WEDER, C.; THIELEMANS, W.; ROMAN, M.; RENNECKAR, S.; GINDL, W.; VEIGEL, S.; KECKES, J.; YANO, H.; ABE, K.; NOGI, M.; NAKAGAITO, A. M.; MANGALAM, A.; SIMONSEN, J.; BENIGHT, A. S.; BIS-MARCK, A.; BERGLUND, L. A.; PEIJS, T. Review: current international research into cel-lulose nanofibres and nanocomposites. J Mater Sci, v. 45, p. 1–33, 2009.

FENGEL, D.; WENEGER, G. Wood chemistry, ultrastructure, reactions, Berlin: Walter de Gruyter, 1989. 613 p.

FAVIER, V.; et al. Nanocomposite materials from latex and cellulose whiskers. Polymer for Advanced Technology, v. 6, p. 351-355, 1995.

FUJISAWA, S.; OKITA, Y.; FUKUZUMI, H; SAITO, T.; ISOGAI, A. Preparation and characterization of TEMPO-oxidized cellulose nanofibril films with free carboxyl groups. Carbohydrate Polymers, v. 84, p. 579–583, 2011.

FRONE, A. N.; PANAITESCU, D. M.; DONESCU, D. Some aspects concerning the isola-tion of cellulose micro- and nano- fibers. UPB Scientific Bulletin, v. 73, p. 133-152, 2011.

GILLIS, P. P. The elastic constants of cellulose. Cellulose Chemistry Technology, v. 4, p. 123–135, 1970.

HABIBI, Y.; LUCIA, L. A.; ROJAS, O. J. Cellulose nanocrystals: chemistry, self-assembly, and applications. Chemical Reviews, vol. 110, nº 6, p. 3479-3500, 2010.

HABIBI, Y., FOULON, L., AGUIÉ-BÉGHIN, V., MOLINARI, M., DOUILLARD, R. Langmuir–Blodgett films of cellulose nanocrystals: Preparation and characterization. Journal of Colloid and Interface Science, v.316, p. 388-397, 2007.

IWAMOTO, S.; NAKAGAITO, A. N.; YANO, H.; NOGI, N. Optically transparent compo-sites reinforced with plant fibre-based nanofibres. Applied Physics A: Material Science & Processing, v. 81, p. 1109–1112, 2005.

IWAMOTO, S.; NAKAGAITO, A. N.; YANO, H. Nano-fibrillation of pulp fibers for the processing of transparent nanocomposites. Applied Physics A, v. 89, p. 461–466, 2007.

IWAMOTO, S.; KENTARO, A.; YANO, H. The Effect of Hemicelluloses on Wood Pulp Nanofibrillation and Nanofiber Network Characteristics. Biomacromolecules, v. 9, p. 1022–1026, 2008.

JANARDHNAN, S; SAIN, M. Isolation of cellulose microfibrils - an enzymathic approach. Bioresources, v. 1, p. 176–188, 2006.

JONOOBI, M.; HARUN, J.;SHAKERI, A.; MISRA, M.; OKSMAND, K. Chemical compo-sition, crystallinity, and thermal degradation of bleached and unbleached kenaf bast (Hibiscus cannabinus) pulp and nanofibers. BioResources, v. 4, n. 2, p. 626-639, 2009.

KIMURA, S.; LAOSINCHAI, W.; ITOH, T.; CUI, X.; LINDER, C.R.; BROWN JR., R. M. Immunogold labeling of rosette terminal cellulose-synthesizing complexesin the vascular plant Vigna angularis. The Plant Cell, v. 11, p. 2075–2086, 1999.

KOLAKOVIC, R.; PELTONEN, L.; LAAKSONEN, T.; PUTKISTO, K.; LAUKKANEN, A.; HIRVONEN, J. Spray-Dried Cellulose Nanofibers as Novel Tablet Excipient. American Association of Pharmaceutical Scientists, v. 12, n. 4, p. 1366-1373, 2011.

KARUS, M.; GAHLE, G. C. Use of natural fibres in composites for German automotive production from 1999 till 2005. Nova-Institut, 2006.

LEÃO, A. L. Produção de compósitos não estruturais a base de lignocelulósicos. p.147. Tese (Doutorado). FCA- UNESP, Botucatu, 1997.

LEAO, A. L.; SARTOR, S.; CARASCHI, J. Natural Fibers Based Composites Technical and Social Issues. Molecular Crystals and Liquid Crystals, v. 448, p. 161-177, 2005.

LEÃO, A. L.; et al. Pulping natural fibers as a raw material aiming the production of nanocellulose nanocomposites. In: PROCEEDINGS OF THE SECOND INTERNATION-AL CONFERENCE ON INNOVATIVE NATURAL FIBRE COMPOSITES FOR IN-DUSTRIAL APPLICATIONS, Roma, 2009.

LIN, N.; DUFRESNE, A. Nanocellulose in biomedicine: Current status and future prospect. European Polymer Journal, v. 59, p. 302–325, 2014.

LU, P.; HSIEH, Y.L.Preparation and properties of cellulose nanocrystals: rods, spheres, and network. Carbohyd Polym, v. 82, p. 329–336, 2010.

LU, Y.; WENG, L.; CAO, X. Biocomposites of Plasticized Starch Reinforced with Cellulose Crystallites from Cottonseed Linter. Macromolecular Bioscience, v. 5, n. 11, p. 1101-1107, 2005.

MARINELLI, A. L.; MONTEIRO, M. R.; AMBRÓSIO, J. D.; BRANCIFORTI, M. C.; KOBAYASHI, M.; NOBRE, A. D. Desenvolvimento de compósitos poliméricos com fibras vegetais naturais da biodiversidade: uma contribuição para a sustentabilidade amazônica. Po-límeros: Ciência e Tecnologia, vol. 18, nº 2, p. 92-99, 2008.

MILEWSKI, J. V. Whiskers. In Concise encyclopedia of composite materials; Kelly, A., Ed.; Pergamon: New York, pag. 311-314, 1994.

MOREIRA, M. R. Natureza das interações celulose-água. Dissertação (Mestrado). São Car-los, IFSC/USP, 70 p., 2009.

MORÁN, J. I.; et al. Extraction of cellulose and preparation of nanocellulose from sisal fibres. Cellulose, v. 15, p. 149–159, 2008.

NETO, W. P. F.; SILVÉRIO, H. A.; DANTAS, N. O.; PASQUINI, D. Extraction and char-acterization of cellulose nanocrystals from agro-industrial residue – Soy hulls. Industrial Crops and Products, v. 42, p. 480– 488, 2013.

OKE, I. Nanoscience in nature: cellulose nanocrystals. Studies by Undergraduate Research-ers at Guelph, v. 3, n. 2, p. 77-80, 2010.

PÄÄKKÖ et al., Enzymatic Hydrolysis Combined with Mechanical Shearing and High-Pressure Homogenization for Nanoscale Cellulose Fibrils and Strong Gels. Biomacromole-cules, v. 8, n. 6, p. 1934-1941, 2007.

SAITO, T.; NISHIYAMA, Y, PUTAUX, J-L.; VIGNON, M.; ISOGAI, A. Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellu-lose. Biomacromolecules, v. 7, p. 1687–1691, 2006.

SAITO, T.; KIMURA, S.; NISHIYAMA, Y.; ISOGAI. A. Cellulose nanofibres prepared by TEMPO mediated oxidation of native cellulose. Biomacromolecules, v. 8, p. 2485–2491, 2007.

SAITO, T.; HIROTA, M.; TAMURA, N.; KIMURA, S.; FUKUZUMI, H.; HEUX, L.; ISO-GA, A. Individualization of nano-sized plant cellulose fibrils by direct surface carboxylation using TEMPO catalyst under neutral conditions. Biomacromolecules, v. 10, p. 1992–1996, 2009.

Published

2025-08-25

How to Cite

DAMÁSIO, Renato Augusto Pereira; PEREIRA, Bárbara Luísa Corradi; GOMES, Fernando Jose Borges; OLIVEIRA, Rubens Chaves de; COLODETTE, Jorge Luiz. Nanocellulose: a brief review from production to regulation: Nanocellulose: a brief review from production to regulation. Multidisciplinary Scientific Journal The Knowledge, Brasil, v. 1, n. 2, 2025. DOI: 10.51473/rcmos.v1i2.2025.1296. Disponível em: https://submissoesrevistarcmos.com.br/rcmos/article/view/1296. Acesso em: 4 sep. 2025.