Bibliometric Study of Digital Twins in the Solar Energy Sector

Bibliometric Study of Digital Twins in the Solar Energy Sector

Authors

  • Lucas Emanuel Almeida Barboza Universidade Federal de Pernambuco-UFPE Author

DOI:

https://doi.org/10.51473/rcmos.v1i2.2025.1777

Keywords:

Digital Twins, Bibliometrics, Optimization

Abstract

Digital Twins (DTs) represent an emerging technology capable of emulating real systems in virtual environments, offering promising solutions for the energy sector. This work presents a bibliometric analysis of the application of Digital Twins in the solar energy sector, aiming to identify trends, gaps, and main research topics. The methodology was based on data collection from the Web of Science and Scopus databases, covering the period from 2009 to 2024, followed by term correlation processing using the VOSviewer software. The results indicate that the topic is recent and growing, with a predominant focus on systems management, performance optimization, and intensive use of Machine Learning for solar resource and power forecasting. It is concluded that research in this area is intrinsically linked to the modernization of power plants and operational efficiency, pointing to a vast field of future investigations.

Downloads

Download data is not yet available.

References

ARTETXE, E.; URALDE, J.; BARAMBONES, O.; CALVO, I.; MARTIN, I. Maximum Power Point Tracker Controller for Solar Photovoltaic Based on Reinforcement Learning Agent with a Digital Twin. Mathematics, v. 11, 2023. DOI: 10.3390/math11092166. DOI: https://doi.org/10.3390/math11092166

BROADUS, R. N. Toward a definition of “bibliometrics.” Scientometrics, v. 12, p. 373–379, 1987. DOI: 10.1007/BF02016680. DOI: https://doi.org/10.1007/BF02016680

CHENG, T.; ZHU, X.; YANG, F.; WANG, W. Machine learning enabled learning-based optimization algorithm in digital twin simulator for management of smart islanded solar-based microgrids. Solar Energy, v. 250, p. 241–247, 2023. DOI: 10.1016/j.solener.2022.12.040. DOI: https://doi.org/10.1016/j.solener.2022.12.040

GHENAI, C.; HUSEIN, L. A.; AL NAHLAWI, M.; HAMID, A. K.; BETTAYEB, M. Recent trends of digital twin technologies in the energy sector: A comprehensive review. Sustainable Energy Technologies and Assessments, v. 54, 2022. DOI: 10.1016/j.seta.2022.102837. DOI: https://doi.org/10.1016/j.seta.2022.102837

GUI, Y. et al. Automatic voltage regulation application for PV inverters in low-voltage distribution grids – A digital twin approach. International Journal of Electrical Power & Energy Systems, v. 149, 109022, 2023. DOI: 10.1016/j.ijepes.2023.109022. DOI: https://doi.org/10.1016/j.ijepes.2023.109022

GUO, Z. et al. Intelligent Digital Twin Modelling for Hybrid PV-SOFC Power Generation System. Energies, v. 16, 2023. DOI: 10.3390/en16062806. DOI: https://doi.org/10.3390/en16062806

HONG, Y. Y.; PULA, R. A. Diagnosis of PV faults using digital twin and convolutional mixer with LoRa notification system. Energy Reports, v. 9, p. 1963–1976, 2023. DOI: 10.1016/j.egyr.2023.01.011. DOI: https://doi.org/10.1016/j.egyr.2023.01.011

HUANG, J.; KOROTEEV, D. D.; RYNKOVSKAYA, M. Machine learning-based demand response in PV-based smart home considering energy management in digital twin. Solar Energy, v. 252, p. 8–19, 2023. DOI: 10.1016/j.solener.2023.01.044. DOI: https://doi.org/10.1016/j.solener.2023.01.044

KHALED, N.; PATTEL, B.; SIDDIQUI, A. Digital twin model creation of solar panels. In: Digital Twin Development and Deployment on the Cloud. Elsevier, 2020. p. 137–162. DOI: 10.1016/b978-0-12-821631-6.00006-2. DOI: https://doi.org/10.1016/B978-0-12-821631-6.00006-2

LI, Y.; TAO, Q.; GONG, Y. Digital twin simulation for integration of blockchain and internet of things for optimal smart management of PV-based connected microgrids. Solar Energy, v. 251, p. 306–314, 2023. DOI: 10.1016/j.solener.2023.01.013. DOI: https://doi.org/10.1016/j.solener.2023.01.013

MINGERS, J.; LEYDESDORFF, L. A review of theory and practice in scientometrics. European Journal of Operational Research, v. 246, p. 1–19, 2015. DOI: 10.1016/j.ejor.2015.04.002. DOI: https://doi.org/10.1016/j.ejor.2015.04.002

NATGUNANATHAN, I. et al. Deakin Microgrid Digital Twin and Analysis of AI Models for Power Generation Prediction. Energy Conversion and Management: X, 100370, 2023. DOI: 10.1016/j.ecmx.2023.100370. DOI: https://doi.org/10.1016/j.ecmx.2023.100370

RAZO, D. E. G. et al. A genetic algorithm approach as a self-learning and optimization tool for PV power simulation and digital twinning. Energies, v. 13, 2020. DOI: 10.3390/en13246712. DOI: https://doi.org/10.3390/en13246712

SEHRAWAT, N.; VASHISHT, S.; SINGH, A. Solar irradiance forecasting models using machine learning techniques and digital twin: A case study with comparison. International Journal of Intelligent Networks, v. 4, p. 90–102, 2023. DOI: 10.1016/j.ijin.2023.04.001. DOI: https://doi.org/10.1016/j.ijin.2023.04.001

SEMERARO, C.; LEZOCHE, M.; PANETTO, H.; DASSISTI, M. Digital twin paradigm: A systematic literature review. Computers in Industry, v. 130, 2021. DOI: 10.1016/j.compind.2021.103469. DOI: https://doi.org/10.1016/j.compind.2021.103469

SLEITI, A. K.; KAPAT, J. S.; VESELY, L. Digital twin in energy industry: Proposed robust digital twin for power plant and other complex capital-intensive large engineering systems. Energy Reports, v. 8, p. 3704–3726, 2022. DOI: 10.1016/j.egyr.2022.02.305. DOI: https://doi.org/10.1016/j.egyr.2022.02.305

TAO, F.; XIAO, B.; QI, Q.; CHENG, J.; JI, P. Digital twin modeling. Journal of Manufacturing Systems, v. 64, p. 372–389, 2022. DOI: 10.1016/j.jmsy.2022.06.015. DOI: https://doi.org/10.1016/j.jmsy.2022.06.015

TUOMIRANTA, A. et al. Auto-Parametrizing the Digital Twin of Photovoltaic Power Systems. In: 38th European Photovoltaic Solar Energy Conference and Exhibition, 2021. p. 1022–1027. DOI: 10.4229/EUPVSEC20212021-5DO.1.4.

ULLAH, S. M. S. et al. Techno-economic impacts of Volt-VAR control on the high penetration of solar PV interconnection. Cleaner Energy Systems, v. 5, 100067, 2023. DOI: 10.1016/j.cles.2023.100067. DOI: https://doi.org/10.1016/j.cles.2023.100067

YAO, J. F. et al. Systematic review of digital twin technology and applications. Visual Computing for Industry, Biomedicine, and Art, v. 6, 2023. DOI: 10.1186/s42492-023-00137-4. DOI: https://doi.org/10.1186/s42492-023-00137-4

YOU, M. et al. Digital twins based day-ahead integrated energy system scheduling under load and renewable energy uncertainties. Applied Energy, v. 305, 2022. DOI: 10.1016/j.apenergy.2021.117899. DOI: https://doi.org/10.1016/j.apenergy.2021.117899

YUAN, G.; XIE, F. Digital Twin-Based economic assessment of solar energy in smart microgrids using reinforcement learning technique. Solar Energy, v. 250, p. 398–408, 2023. DOI: 10.1016/j.solener.2022.12.031. DOI: https://doi.org/10.1016/j.solener.2022.12.031

Published

2025-12-02

How to Cite

BARBOZA, Lucas Emanuel Almeida. Bibliometric Study of Digital Twins in the Solar Energy Sector: Bibliometric Study of Digital Twins in the Solar Energy Sector. Multidisciplinary Scientific Journal The Knowledge, Brasil, v. 1, n. 2, 2025. DOI: 10.51473/rcmos.v1i2.2025.1777. Disponível em: https://submissoesrevistarcmos.com.br/rcmos/article/view/1777. Acesso em: 4 dec. 2025.