Artificial intelligence models in primary care: performance, transparency, and safety in patient triage

Artificial intelligence models in primary care: performance, transparency, and safety in patient triage

Authors

  • Lucas Pedroza Daniel UFCSPA Author

DOI:

https://doi.org/10.51473/rcmos.v1i1.2023.1851

Keywords:

artificial intelligence in healthcare; primary care; clinical governance; medical ethics; automated triage; emergency care.

Abstract

The incorporation of artificial intelligence (AI) into health systems has significantly progressed in recent years, expanding into non-hospital settings such as primary care and emergency services. This article critically analyzes international experiences (United States, Canada, United Kingdom, and Brazil) involving AI applications for automated triage, risk stratification, and clinical decision support, with a focus on low- and medium-complexity healthcare settings. It outlines key risks associated with these technologies—algorithmic bias, opacity, interoperability failures, data governance weaknesses, and privacy issues—in light of international regulatory and ethical frameworks proposed by institutions such as the World Health Organization (WHO), the Food and Drug Administration (FDA), and the National Institute for Health and Care Excellence (NICE). Based on this analysis, the article proposes a set of minimum criteria for the safe and ethical implementation of AI in primary care and emergency contexts, including local clinical validation, transparency, bias control, data governance, systemic integration, staff training, and post-deployment monitoring. It concludes that AI can strengthen primary care, improve patient flow management, and support complex clinical decisions, provided it is implemented under robust clinical governance, with continuous professional oversight and full respect for patients’ rights. 

Downloads

Download data is not yet available.

Author Biography

  • Lucas Pedroza Daniel, UFCSPA

    Médico, graduado em Medicina pela Universidad de Ciencias Médicas de Cuba e pós-graduado em Medicina de Família e Comunidade (UFCSPA) 

References

ORGANIZAÇÃO MUNDIAL DA SAÚDE. Ética e governança da inteligência artificial para a saúde. Genebra: World Health Organization, 2021.

FOOD AND DRUG ADMINISTRATION. Proposed regulatory framework for modifications to AI/ML-based software as a medical device (SaMD): discussion paper and request for feedback. Silver Spring: FDA, 2019.

NATIONAL INSTITUTE FOR HEALTH AND CARE EXCELLENCE. Evidence standards framework for digital health technologies. Londres: NICE, 2021.

BRASIL. Ministério da Saúde. TAMIS-IA: iniciativa nacional para inteligência artificial em saúde. Brasília: DATASUS, 2023.

PEREIRA, J. P.; DINIZ, M. A. A.; LIMA, J. G. Inteligência artificial em saúde: riscos éticos e perspectivas para o SUS. Revista Bioética, v. 30, n. 2, p. 264-273, 2022.

SHORTLIFFE, E. H.; SEPÚLVEDA, M. J. Clinical decision support in the era of artificial intelligence. JAMA, v. 320, n. 21, p. 2199-2200, 2018. DOI: https://doi.org/10.1001/jama.2018.17163

OBERMEYER, Z. et al. Dissecting racial bias in an algorithm used to manage the health of populations. Science, v. 366, n. 6464, p. 447-453, 2019. DOI: https://doi.org/10.1126/science.aax2342

TOPOL, E. Deep medicine: how artificial intelligence can make healthcare human again. Nova York: Basic Books, 2019.

RAJKOMAR, A.; DEAN, J.; KOHANE, I. Machine learning in medicine. New England Journal of Medicine, v. 380, p. 1347-1358, 2019. DOI: https://doi.org/10.1056/NEJMra1814259

SILVA, A.; CARVALHO, D. B.; FARIA, L. F. Interoperabilidade em saúde: desafios e perspectivas para a adoção da IA no SUS. Cadernos de Saúde Pública, v. 37, n. 4, 2021. DOI: https://doi.org/10.1590/0102-311x00035321

IBM WATSON HEALTH. Transparency and trust in AI for health. Whitepaper. IBM, 2021.

DISTRITO FEDERAL. Secretaria de Saúde. TAMIS: triagem avançada médica com IA no SUS. Brasília, 2023.

WORLD ECONOMIC FORUM. AI governance in healthcare: ethical and legal challenges. Genebra: WEF, 2020.

EUROPEAN COMMISSION. Proposal for a regulation on artificial intelligence. Bruxelas: European Union, 2021.

Published

2023-10-16

How to Cite

DANIEL, Lucas Pedroza. Artificial intelligence models in primary care: performance, transparency, and safety in patient triage: Artificial intelligence models in primary care: performance, transparency, and safety in patient triage. Multidisciplinary Scientific Journal The Knowledge, Brasil, v. 1, n. 1, 2023. DOI: 10.51473/rcmos.v1i1.2023.1851. Disponível em: https://submissoesrevistarcmos.com.br/rcmos/article/view/1851. Acesso em: 2 jan. 2026.