The Efficacy of Probiotics in Attenuating Symptoms in Those Infected with SARS-CoV-2: An Integrative Review
The Efficacy of Probiotics in Attenuating Symptoms in Those Infected with SARS-CoV-2: An Integrative Review
DOI:
https://doi.org/10.51473/rcmos.v1i1.2026.1912Keywords:
Dysbiosis, Gut-Lung Axis, ImmunologyAbstract
This study presents an integrative review on the influence of gut microbiota on SARS-CoV-2 infection. The gut microbiota, comprising trillions of microorganisms, plays a crucial role in human health, including modulating immune responses and maintaining intestinal homeostasis. Changes in the microbiota, known as dysbiosis, can negatively impact health by increasing susceptibility to various diseases, including viral infections like COVID-19. Evidence demonstrates that SARS-CoV-2 infection can significantly alter the composition of the gut microbiota, resulting in gastrointestinal symptoms and potentially exacerbating the clinical course of the disease. This work reviewed clinical and pre-clinical studies investigating the relationship between gut dysbiosis and the severity of COVID-19, highlighting therapeutic interventions such as the use of probiotics, prebiotics, and fecal microbiota transplantation. The results indicate that modulating the gut microbiota may be a promising strategy to improve clinical outcomes and reduce symptom severity in COVID-19 patients. However, further studies are necessary to validate the efficacy and safety of these therapeutic approaches.
Downloads
References
ABESO. Associação Brasileira para o Estudo da Obesidade e da Síndrome Metabólica. Diretrizes brasileiras de obesidade. 4. ed. São Paulo: ABESO, 2016.
ALCÂNTARA, A. C. F.; VERCOZA, E. N. M.; CAMPOS, T. A. Revisão sistemática: o desequilíbrio da microbiota intestinal e sua influência na obesidade. REER, 2023. Disponível em: https://reer.emnuvens.com.br/reer/article/view/439. Acesso em: 15 ago. 2023.
MOREIRA, A. P. B. Influência da dieta na endotoxemia metabólica. HU Revista, v. 40, n. 3-4, p. 203–208, 2013. Disponível em: https://periodicos.ufjf.br/index.php/hurevista/article/view/2443. Acesso em: 12 ago. 2023.
BARLOW, J. T. et al. Quantitative sequencing clarifies the role of disruptor taxa, oral microbiota, and strict anaerobes in the human small intestine microbiome. Microbiome, v. 9, p. 214, 2021. Disponível em: https://pubmed.ncbi.nlm.nih.gov/34724979/. Acesso em: 7 set. 2023. DOI: https://doi.org/10.1186/s40168-021-01162-2
SEEKATZ, A. M. et al. Spatial and temporal analysis of the stomach and small-intestinal microbiota in fasted healthy humans. mSphere, v. 4, 2019. Disponível em: https://pubmed.ncbi.nlm.nih.gov/30867328/. Acesso em: 6 set. 2023. DOI: https://doi.org/10.1128/mSphere.00126-19
LEITE, G. G. S. et al. Mapping the segmental microbiomes in the human small bowel in comparison with stool: a REIMAGINE study. Digestive Diseases and Sciences, v. 65, p. 2595–2604, 2020. Disponível em: https://pubmed.ncbi.nlm.nih.gov/32140945/. Acesso em: 7 set. 2023. DOI: https://doi.org/10.1007/s10620-020-06173-x
ZOETENDAL, E. G.; RAJILIĆ-STOJANOVIĆ, M.; DE VOS, W. M. High-throughput diversity and functionality analysis of the gastrointestinal tract microbiota. Gut, v. 57, p. 1605–1615, 2008. Disponível em: https://pubmed.ncbi.nlm.nih.gov/18941009/. Acesso em: 7 set. 2023. DOI: https://doi.org/10.1136/gut.2007.133603
QIN, J. et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature, v. 464, p. 59–65, 2010. Disponível em: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3779803/. Acesso em: 7 set. 2023.
RAJILIĆ-STOJANOVIĆ, M.; DE VOS, W. M. The first 1000 cultured species of the human gastrointestinal microbiota. FEMS Microbiology Reviews, v. 38, p. 996–1027, 2014. Disponível em: https://academic.oup.com/femsre/article/38/5/996/498300. Acesso em: 7 set. 2023. DOI: https://doi.org/10.1111/1574-6976.12075
ADOLPH, T. E. et al. Pancreas-microbiota cross talk in health and disease. Annual Review of Nutrition, v. 39, p. 249–266, 2019. Disponível em: https://pubmed.ncbi.nlm.nih.gov/31433743/. Acesso em: 7 set. 2023. DOI: https://doi.org/10.1146/annurev-nutr-082018-124306
RIQUELME, E. et al. Tumor microbiome diversity and composition influence pancreatic cancer outcomes. Cell, v. 178, p. 795–806, 2019. Disponível em: https://pubmed.ncbi.nlm.nih.gov/31398337/. Acesso em: 8 set. 2023.
LEONARD, M. M. et al. Microbiome signatures of progression toward celiac disease onset in at-risk children. Proceedings of the National Academy of Sciences, v. 114, 2021. Disponível em: https://pubmed.ncbi.nlm.nih.gov/34253606/. Acesso em: 8 set. 2023.
MACHADO, T. et al. Qual a influência da microbiota na obesidade e seu envolvimento inflamatório? SciELO Preprints, 2022. Disponível em: https://doi.org/10.1590/SciELOPreprints.4358. DOI: https://doi.org/10.1590/SciELOPreprints.4358
VERAS, R. S. C.; NUNES, C. P. Conexão cérebro-intestino-microbiota no transtorno do espectro autista. Revista de Medicina da Família e Saúde Mental, v. 1, n. 1, 2019.
FROST, F. et al. Long-term instability of the intestinal microbiome is associated with metabolic liver disease. Gut, v. 70, p. 522–530, 2021. Disponível em: https://pubmed.ncbi.nlm.nih.gov/33168600/. Acesso em: 7 set. 2023. DOI: https://doi.org/10.1136/gutjnl-2020-322753
LLOYD-PRICE, J. et al. Multi-omics of the gut microbial ecosystem in inflammatory bowel diseases. Nature, v. 569, p. 655–662, 2019. Disponível em: https://pubmed.ncbi.nlm.nih.gov/31142855/. Acesso em: 7 set. 2023.
KNAUF, C. et al. Targeting the enteric nervous system to treat metabolic disorders. Neuroendocrinology, v. 107, p. 139–146, 2020. Disponível em: https://pubmed.ncbi.nlm.nih.gov/31240267/. Acesso em: 8 set. 2023. DOI: https://doi.org/10.1159/000500602
FOURNEL, A. et al. Apelin targets gut contraction to control glucose metabolism via the brain. Gut, v. 66, p. 258–269, 2017. Disponível em: https://pubmed.ncbi.nlm.nih.gov/26565000/. Acesso em: 8 set. 2023. DOI: https://doi.org/10.1136/gutjnl-2015-310230
KNAUF, C. et al. Brain glucagon-like peptide-1 increases insulin secretion. Journal of Clinical Investigation, v. 111, p. 3554–3563, 2005. Disponível em: https://pubmed.ncbi.nlm.nih.gov/16322793/. Acesso em: 7 set. 2023. DOI: https://doi.org/10.1172/JCI25764
ABOT, A. et al. Galanin enhances systemic glucose metabolism. Molecular Metabolism, v. 10, p. 100–108, 2018. Disponível em: https://pubmed.ncbi.nlm.nih.gov/29428595/. Acesso em: 7 set. 2023. DOI: https://doi.org/10.1016/j.molmet.2018.01.020
ABOT, A. et al. Identification of new enterosynes using prebiotics. Gut, v. 70, p. 1078–1087, 2021. Disponível em: https://pubmed.ncbi.nlm.nih.gov/33020209/. Acesso em: 8 set. 2023. DOI: https://doi.org/10.1136/gutjnl-2019-320230
ABOT, A.; CANI, P. D.; KNAUF, C. Impact of intestinal peptides on the enteric nervous system. Frontiers in Endocrinology, v. 9, p. 328, 2018. Disponível em: https://pubmed.ncbi.nlm.nih.gov/29988396/. Acesso em: 8 set. 2023. DOI: https://doi.org/10.3389/fendo.2018.00328
Downloads
Published
Issue
Section
Categories
License
Copyright (c) 2026 Salem Suhail El Khatib, Nathália Gabriela Moreira (Autor)

This work is licensed under a Creative Commons Attribution 4.0 International License.


