Apicification in teeth with incomplete rhizogenesis
an experience report
DOI:
https://doi.org/10.51473/ed.al.v3i1.487Keywords:
Apexification, Immature teeth, Bio C Repair, Calcium HydroxideAbstract
The endodontic treatment in immature teeth requires special attention due the fragility, thin dentin walls, wide rooth canal and open apex in this elements. In this cases, the conventional endodontic treatment becomes
unviable, which lead to a procedure that has the goal by induce the formation of mineralized barrier by using
biologically compatible materials with consistent characteristics, like calcium hydroxide, MTA and bioceramic
cement (Bio C Repair), named by apexifi cation. The objective of this research is to present a successful experience
of endodontic treatment in an immature teeth with by using the technique apexifi cation with combination of calcium hydroxide and Bio C Repair. It was concluded that the apexifi cation treatment in immature teeths is viable, having clinical sucess with the combination of a correct cleaning and disinfection in the rooth, the use of good intracanal medication and the use of materials like calcium hydroxide and Bio C Repair, which will induce formation of mineralized apical barrier.
Downloads
References
ABBAS, A. et al. Efficacy of MTA and Biodentine as Apical Barriers in Immature Permanent Teeth: A Microbiological Study. Int J Clin Pediatr Dent. v.13, n.6, p.656–662, 2020. DOI: https://doi.org/10.5005/jp-journals-10005-1853
AGRAFIOTI, A. et al. Analysis of clinical studies related to apexification techniques. European Journal of Paediatric Dentistry. v. 18, n. 4, p. 273-284, 2017.
AJRAM, J. et al. Management of an Immature Necrotic Permanent Molar with Apical Periodontitis Treated by Regenerative Endodontic Protocol Using Calcium Hydroxide and MM-MTA: A Case Report with Two Years Follow-Up. Dentistry Journal. v.7, n. 1, 2019. DOI: https://doi.org/10.3390/dj7010001
AL–KAHTANI, A. et al. In-vitro evaluation of microleakage of an orthograde apical plug of mineral trioxide aggregate in permanent teeth with simulated immature apices. J End. v. 31, n. 2, p.117-119, 2005. DOI: https://doi.org/10.1097/01.don.0000136204.14140.81
ARSLAN, H. et al. Regenerative Endodontic Procedures in Necrotic Mature Teeth with Periapical Radiolucencies: A Preliminary Randomized Clinical Study. J Fim. v. 45, p.863-872, 2019. DOI: https://doi.org/10.1016/j.joen.2019.04.005
BENETTI, F. et al. Cytotoxicity, biocompatibility, and biomineralization of a new ready-for-use bioceramic repair material. Braz. Dente. J. v. 30, p. 325-332, 2019.
BENETTI, F. et al. Cytotoxicity, Biocompatibility, and Biomineralization of a New Ready-for-Use Bioceramic Repair Material. Brazilian Dental Journal. v. 30, n. 4, p.325-332, 2019. DOI: https://doi.org/10.1590/0103-6440201902457
BERGER, T.; BARATZ, A. Z.; GUTMANN, J. L. In vitro investigations into the etiology of mineral trioxide tooth staining. J Conserv Dent. v. 17, n. 6, p. 526-530, 2014. DOI: https://doi.org/10.4103/0972-0707.144584
BESLOT-NEVEU, A. et al. Mineral trioxide aggregate versus calcium hydroxide in apexification of non-vital immature teeth: Study protocol for a randomized controlled trial. Trials. v.12, p. 174, 2011. DOI: https://doi.org/10.1186/1745-6215-12-174
Bodaneci, A. et al. Efeitos do tampão apical no potencial selador de obturações com agregado de trióxido mineral em dentes com rizogênese incompleta. Rev. Clin. Pesq. Odontol. v. 5, n. 3, p. 263- 266, 2009.
BOSE, R.; NUMMIKOSK, P.; HARGREAVES, K. A retrospective evaluation of radiographic outcomes in immature teeth with necrotic root canal systems treated with regenerative endodontic procedures. J. Endod. v. 35, p.1343-1349, 2009. DOI: https://doi.org/10.1016/j.joen.2009.06.021
BRITO-JÚNIOR, M. et al. Evidências clínicas da técnica de apicificação com barreira apical com agregado de trióxido mineral – uma revisão crítica. RFO. v. 16, n. 1, p. 54-58, 2011.
ĆETENOVIÉ, B. et al. Use of mineral trioxide aggregate in the treatment of traumatized teeth in children: Two case reports. Vojnosanit Pregl. v. 70, n. 8, p. 781-784, 2013. DOI: https://doi.org/10.2298/VSP1308781C
CEVEK, M. Treatment of non-vital permanent incisors with calcium hydroxide. I. Follow-up of periapical repair and apical closure of immature roots. Odontol Revy. v. 23, p. 27-44, 1972.
CHALA, S.; ABOQAL, R.; RIDA, S. Apexification of immature teeth with calcium hydroxide or mineral trioxide aggregate: systematic review and meta-analysis. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. v.112, n. 4, p. 36 - 42, 2011. DOI: https://doi.org/10.1016/j.tripleo.2011.03.047
CHEN, S. et al. Novel fast-setting mineral trioxide aggregate: its formulation, chemical-physical properties, and cytocompatibility. ACS Appl Mater Interfaces. v. 10, p. 20334-20341, 2018. DOI: https://doi.org/10.1021/acsami.8b04946
CINTRA, L. T. A. et al. Cytotoxicity, Biocompatibility, and Biomineralization of the New High-Plasticity MTA Material. J Fim. v. 43, p. 774-778, 2017. DOI: https://doi.org/10.1016/j.joen.2016.12.018
DIÓGENES, A.; RUPAREL N. B. Regenerative Endodontic Procedures: Clinical Outcomes. Dent Clin North Am. v. 61, p. 111-125, 2017. DOI: https://doi.org/10.1016/j.cden.2016.08.004
DUGGAL, M. et al. Interventions for the endodontic management of non-vital traumatised immature permanent anterior teeth in children and adolescents: a systematic review of the evidence and guidelines of the European Academy of Pediatric Dentistry. Springer. v. 18, p. 139-151, 2017. DOI: https://doi.org/10.1007/s40368-017-0289-5
ESPIR, C. G. et al. Solubility and bacterial sealing ability of MTA and root-end filling materials. J Appl Oral Sci. v. 24, p.121-125, 2016. DOI: https://doi.org/10.1590/1678-775720150437
FARACO JUNIOR, I. M.; HOLLAND, R. Response of the pulp of dogs to capping with mineral trioxide aggregate or a calcium hydroxide cement. Dent. Traumatol. v. 17, n. 4, p.163-166, 2001. DOI: https://doi.org/10.1034/j.1600-9657.2001.170405.x
FELIPPE W. T.; FELIPPE M. C. S.; ROCHA J. C. The effect of mineral trioxide aggregate on the apexification and periapical healing of teeth with incomplete root formation. Int Endd J. v. 39, n.1, p.2-9, 2006. DOI: https://doi.org/10.1111/j.1365-2591.2005.01037.x
FLORATOS, S. G. et al. Apical Barrier Formation After Incomplete Orthograde MTA Apical Plug Placement in Teeth with Open Apex: Report of Two Cases. Brazilian Dental Journal. v. 24, n. 2, p. 163-166, 2013. DOI: https://doi.org/10.1590/0103-6440201302163
FOUAD, A. F. Microbiological aspects of traumatic injuries. Dent Traumatol. v. 35, p. 324-332, 2019. DOI: https://doi.org/10.1111/edt.12494
GALLER, K. M. et al. EDTA conditioning of dentine promotes adhesion, migration, and differentiation of dental pulp stem cells. Int Endd J. v. 49, p. 581–590, 2016. DOI: https://doi.org/10.1111/iej.12492
GHILOTTI, J. et al. Comparative Surface Morphology, Chemical Composition, and Cytocompatibility of Bio-C Repair, Biodentine, and ProRoot MTA on hDPCs. Materials. v.13, ed. 9. p. 2189, 2020. DOI: https://doi.org/10.3390/ma13092189
GRÜNDLING, G. S. L. et al. Apexification in a tooth with crown-radicular fracture - a case report. RFO. v. 15, n. 1, p. 77-82, 2010.
GÜNES, B., AYDINBELGE, H. A. Mineral trioxide aggregate apical plug method for the treatment of nonvital immature permanent maxillary incisors: Three case reports. Journal of Conservative Dentistry. v. 15, n. 1, p. 73-76, 2012. DOI: https://doi.org/10.4103/0972-0707.92611
INADA, R. M. H. Análise da alteração de cor promovida por materiais reparadores e cimentos endodônticos à base de silicato de cálcio com diferentes radiopacificadores. 2018. Dissertação (Mestrado em Endodontia) - Faculdade de Odontologia da Universidade Estadual Paulista, Araraquara, 2018.
KONTAKIOTIS, E. G. et al. Regenerative endodontic therapy: a data analysis of clinical protocols. J Ended. v. 41, p. 146-154, 2015. DOI: https://doi.org/10.1016/j.joen.2014.08.003
KRÖLING, A. E. et al. Use of MTA in teeth with incomplete root formation or open foramina: introduction of a protocol and report of clinical cases. RGO, Rev Gaúch Odontol. Porto Alegre, v. 62, n. 3, p. 325-330, 2014. DOI: https://doi.org/10.1590/1981-86372014000300000151337
LATHAM, J. et al. Disinfection Efficacy of Current Regenerative Endodontic Protocols in Simulated Necrotic Immature Permanent Teeth. J Ended. v. 42, p.1218-1225, 2016. DOI: https://doi.org/10.1016/j.joen.2016.05.004
JEERUPHAN, T. et al. Mahidol study 1: comparison of radiographic and survival outcomes of immature teeth treated with either regenerative endodontic or apexification methods: a retrospective study. J. Endod. v. 38, n. 10, p.1330-1336, 2012. DOI: https://doi.org/10.1016/j.joen.2012.06.028
JITARU, S. et al. The use of bioceramics in endodontics - literature review. Clujul Med. v. 89, p. 470-473, 2016. DOI: https://doi.org/10.15386/cjmed-612
KAHLER, B. Endodontic retreatment of maxillary incisors previously treated with a conventional apexification protocol: a case report. Aust. Endod. J. v.37, n.1, p.31-35, 2011. DOI: https://doi.org/10.1111/j.1747-4477.2011.00294.x
KAKANI, A. K. et al. A review on perforation repair materials. J Clin Diagn Res. v. 9, p. 09-13. 2015. DOI: https://doi.org/10.7860/JCDR/2015/13854.6501
KIM, S.G. et al. Regenerative endodontics: A comprehensive review. Int Endd J. v. 51, p. 367-1388, 2018. DOI: https://doi.org/10.1111/iej.12954
KOGAN, P. H. J.; GLICKMAN, G. N.; WATANABE, I. The effects of various additives on the setting properties of MTA. J Ended. v. 32, p. 569-572, 2006. DOI: https://doi.org/10.1016/j.joen.2005.08.006
KOHLI, M.R. et al. Spectrophotometric analysis of coronal tooth discoloration induced by various bioceramic cements and other endodontic materials. J Ended. v. 41, p. 1862-1866, 2015. DOI: https://doi.org/10.1016/j.joen.2015.07.003
LEE, S. J.; MONSEF, M.; TORABINEJAD, M. Sealing ability of a mineral trioxide aggregate for repair of lateral root perforations. J. Endod. v. 19, n. 11, p. 541-544, 1993. DOI: https://doi.org/10.1016/S0099-2399(06)81282-3
LOPES, H. P.; SIQUEIRA JR. Endodontia. Biologia técnica. Rio de Janeiro: MEDSI, 2011.
LOVATO, K. F.; SEDGLEY, C. M. Antibacterial activity of Endosequence root repair material and proroot MTA against clinical isolates of Enterococcus faecalis. J Ended. v. 37, p. 1542-1546, 2011. DOI: https://doi.org/10.1016/j.joen.2011.06.022
MANIGLIA-FERREIRA, C. et al. 12-Year Follow-Up of Regenerative Endodontic Treatment of Immature Permanent Upper Incisors with Acute Abscess. Brazilian Dental Journal. v. 31, n. 6, p. 680-684, 2020. DOI: https://doi.org/10.1590/0103-6440202003663
MARCIANO, MA. et al. Assessment of color stability of white mineral trioxide aggregate Angelus and bismuth oxide in contact with tooth structure. J Endod. v.40, n.8, p.1235–1240. DOI: https://doi.org/10.1016/j.joen.2014.01.044
MARTIN, DE et al. Concentration-dependent effect of sodium hypochlorite on the survival and differentiation of stem cells of the apical papilla. J. Endod. v.40, p.51-55, 2014. DOI: https://doi.org/10.1016/j.joen.2013.07.026
MESQUITA, N. V. et al. Aplicação de um dente avulsionado com MTA: relato de caso. Rev. Fac. Odontol. Porto Alegre. v. 52, n. 1, p. 67-71, 2011. DOI: https://doi.org/10.22456/2177-0018.27086
MORO, E. P.; KOZLOWSKI JUNIOR, V. A.; ALVES. F. B. T. Apexificação com hidróxido de cálcio ou agregado de trióxido mineral: revisão sistemática. Rev Odontol UNESP. v. 42, n. 4, p. 310-316. 2013. DOI: https://doi.org/10.1590/S1807-25772013000400012
NIEDERMAIER, K. C.; GUERISOLI, D.M.Z. Apicificação com plug apical de MTA em dente traumatizado. Rev. bras. odontol., Rio de Janeiro, v. 70, n. 2, p. 213-215, 2013.
OLIVEIRA, C. T. S. et al. Mineral trioxide aggregate for Intruded Teeth with Incomplete Apex Formation. Bull Tokyo Dent Cool. v. 59, n. 1, p. 35-41, 2017. DOI: https://doi.org/10.2209/tdcpublication.2017-0002
OLIVEIRA, D. C. R. S. et al. Avaliação da utilização de MTA como plug apical em dentes com ápices abertos. Rev. Bras. Odontol. Rio de Janeiro. v. 68, n. 1, p. 59- 63, 2011.
OROSCO, F. A. et al. Sealing ability of gray MTA AngelusTM, CPMTM, and MBPC used as apical plugs. J Appl Oral Sci. v. 16, p. 50-54, 2008. DOI: https://doi.org/10.1590/S1678-77572008000100010
OROSCO, F. A. et al. Sealing ability, marginal adaptation, and their correlation using three root-end filling materials as apical plugs. J Appl Oral Sci. v. 18, n. 2, p. 127-134, 2009. DOI: https://doi.org/10.1590/S1678-77572010000200006
PARIROK, M.; TORABINEJAD, M. Mineral trioxide aggregate: a comprehensive literature review-part III: clinical applications, drawbacks, and mechanism of action. J Ended. v. 36, p. 400-413, 2010. DOI: https://doi.org/10.1016/j.joen.2009.09.009
PLOTINO, G. et al. Ultrasonics in Endodontics: a Review of the Literature. Journal of Endodontics. v. 33, n. 2, p.81-95, 2007. DOI: https://doi.org/10.1016/j.joen.2006.10.008
RAHDE, N.; GRECCA, F.; BOTTCHER, D. Calcium hydroxide removal: effectiveness of ultrasonic and manual techniques. Odontociência, 2012.
REYES, A. D. et al. Study of calcium hydroxide apexification in 26 young permanent incisors. Dent. Traumatol. v. 21, n. 3, p.141-145, 2005. DOI: https://doi.org/10.1111/j.1600-9657.2005.00289.x
SIMON, S. et al. The use of mineral trioxide aggregate in one-visit apexification treatment: A prospective study. Int Endd J. v. 40, p.186-97, 2007. DOI: https://doi.org/10.1111/j.1365-2591.2007.01214.x
SILVA, G. F. et al. Zirconium oxide and niobium oxide, used as radiopacifiers in a calcium silicate-based material, stimulate fibroblast proliferation and collagen formation. Int Endd J. v. 50, n. 2, p. 95-108, 2017. DOI: https://doi.org/10.1111/iej.12789
SOARES, J. et al. Calcium hydroxide-induced apexification with apical root development: a clinical case report. Int. Endod. J. v. 4, n. 8, p. 710-719, 2008. DOI: https://doi.org/10.1111/j.1365-2591.2008.01415.x
SOUZA, M. A. et al. Agregado de trióxido mineral como material de selamento apical em dentes com rizogênese incompleta: uma série de casos. Rev Odonto Cienc. v. 26, n. 3, p. 262-266, 2011.
TORABINEJAD, M.; WATSON, T. F.; PITT FORD T. R. Sealing ability of a mineral trioxide aggregate when used as a root end filling material. J Ended. v. 19, p. 591-595, 1993. DOI: https://doi.org/10.1016/S0099-2399(06)80271-2
TOUBES, K. S. et al. Bio-C Repair - A New Bioceramic Material for Root Perforation Management: Two Case Reports. Brazilian Dental Journal. v.32, n. 1, p. 104-110, 2021. DOI: https://doi.org/10.1590/0103-6440202103568
TREVINO, E. G. et al. Effect of irrigants on the survival of human stem cells of the apical papilla in a platelet- rich plasma scaffold in human root tips. J. Endod. v. 37, p. 1109-1115, 2011. DOI: https://doi.org/10.1016/j.joen.2011.05.013
TSATSAS, D. V.; MELIOU, H. A. Sealing effectiveness of materials used in furcation perforation in vitro. Int Dent J. v. 55, n. 3, p. 133-341, 2005. DOI: https://doi.org/10.1111/j.1875-595X.2005.tb00310.x
VASQUES-GARCÍA, F. et al. Effect of silver nanoparticles on physicochemical and antibacterial properties of calcium silicate cements. Braz Dent J. v. 27, p. 508-514, 2016. DOI: https://doi.org/10.1590/0103-6440201600689
WALSH, R. M. et al. Bioactive endodontic materials for everyday use: a review. Gen Dent. v. 66, p. 48-51, 2018
Downloads
Published
Issue
Section
Categories
License
Copyright (c) 2023 Agatha Maria Santos Bezerra, Camila Suanine Borba De Moura, Gabrielly Lopes Da Silva Araújo, Karine Ferreira Santos, Nayara Louise Da Silva Dias, Victor Lima Drumond De Castro (Autor)

This work is licensed under a Creative Commons Attribution 4.0 International License.


